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Abstract—The prospect of base station cooperation leading to
joint combining at widely separated antennas has led to increased
interest in macrodiversity systems, where both sources and receive
antennas are geographically distributed. In this scenario, analyt-
ical investigation of channel capacity is extremely challenging for
finite-size systems since the channel matrices have a very general
form where each path may have a different power. Hence, in this
paper, we consider the ergodic sum capacity of a macrodiversity
multiple-input multiple-output system with arbitrary numbers of
sources and receive antennas operating over Rayleigh fading chan-
nels. For this system, we compute the exact ergodic capacity for a
system with at most two transmit antennas and a compact approx-
imation for the general system, which is shown to be very accu-
rate over a wide range of cases. Finally, we compare our results
with previous asymptotic results and bounds. Results are verified
by Monte Carlo simulations and the impact on capacity of various
channel power profiles is investigated.

Index Terms—Capacity, CoMP, DAS, macrodiversity, MIMO,
MIMO-MAUC, network MIMO, Rayleigh fading, sum-rate.

I. INTRODUCTION

ITH the advent of network multiple-input mul-
W tiple-output (MIMO) [1], base station (BS) collabo-
ration [2], and cooperative MIMO [3], it is becoming more
common to consider MIMO links where the receive array,
transmit array, or both are widely separated. In these scenarios,
individual antennas from a single effective array may be sep-
arated by a considerable distance. When both transmitter and
receiver have distributed antennas, we refer to the link as a
macrodiversity MIMO link. Fundamental analytical results
for performance of such multiuser links are scarce, despite
their growing importance in research [4]-[7] and standards
where coordinated multipoint transmission is part of 3GPP
LTE Advanced.
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Some analytical progress in this area has been made recently
in the performance analysis of linear combining for macrodiver-
sity systems in Rayleigh fading [8], [9]. However, work on this
specific capacity problem for a finite-size system in a macrodi-
versity layout is very limited. There are a large number of related
works, but these tend to consider different channels, simplified
assumptions, and asymptotic approaches. For example, similar
work includes the capacity analysis of Rayleigh channels with
a two-sided Kronecker correlation structure [10]. However, the
Kronecker structure is too much restrictive for a macrodiver-
sity layout and such results cannot be leveraged here. Work has
been done on system capacity for particular cellular structures,
including Wyner’s circular cellular array model [6] and the infi-
nite linear cell-array model [7]. There is a large body of research
on distributed antenna systems where a Gaussian assumption is
used for modeling interference plus noise for simplifying ana-
lytical derivations [11]-[13]. In some other work, crude approx-
imations are used, which are sensible, but appear insufficient to
model the complex interdependence of desired and interfering
sources [14]. On another front, an asymptotic large random ma-
trix approach is employed to derive a deterministic equivalent to
the ergodic sum capacity in [15] and [16]. Similarly, an asymp-
totic approach is used to study cellular systems with multiple
correlated BSs and user antennas in [17] and [18]. A compara-
tive study on uplink sum capacity with colocated and distributed
antennas can be found in [19] and [20]. Of particular relevance
to the current work is the asymptotic analysis given in [21]. The
exact asymptotic capacity is derived which applies to general
independent channel matrices and not just the Rayleigh case
in [21]. These powerful results also provide accurate approxi-
mations to finite system capacity. In Section VII, we show that
the new approximations developed here make further improve-
ments on the accuracy of these results.

Despite these contributions, the general macrodiversity
model appears difficult to handle for finite-size systems. The
analytical difficulties are caused by the geographical separation
of the antennas which results in different entries of the channel
matrix having different powers with an arbitrary pattern. Also,
these powers can vary enormously when shadowing and path
loss are considered. Note that this type of channel model also
occurs in the work of [22]. When the receive antennas are colo-
cated, classical models and the use of a Kronecker correlation
matrix lead to a Wishart form. This allow extensive results in
multivariate statistics to be leveraged and performance analysis
is well advanced [23], [24]. In contrast, the macrodiversity
case violates the Wishart assumptions making the analytical
work extremely difficult. The analytical complexity is clearly
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evident even in the simplest case of a dual source scenario in
Section IV.

In this paper, we consider a macrodiversity MIMO multiple
access channel (MIMO-MAC) where all sources and receive an-
tennas are widely separated and all links experience indepen-
dent Rayleigh fading. For this system, we consider the ergodic
sum capacity, under the assumption of no channel state infor-
mation (CSI) at the transmitters. For two sources, we derive
the exact ergodic sum capacity. The result is given in closed
form, but the details are complicated, and for more than two
sources, it would appear that an exact approach is too complex
to be useful. Hence, we develop an approximation and compare
the accuracy of this approximation to the asymptotic results in
[21] and the bound in [27]. Furthermore, we use the bound in
[27] to gain insight into capacity behavior and its relationship
with the channel powers. In [25], we presented a preliminary
study of this problem, which focused on the approximation for
the general case. In this paper, we have extended the conference
version to include the exact two source results, correlated chan-
nels, full mathematical details (see Section III), a motivation for
the approximate analysis (see Appendix B), and a much wider
range of scenarios, power profiles, and discussion in the results
section.

Note that the methodology developed is for the case of arbi-
trary powers for the entries in the channel matrix. There is no
restriction due to particular cellular structures. Hence, the re-
sults and techniques may also have applications in multivariate
statistics.

The rest of this paper is laid out as follows. Section II de-
scribes the system model and Section III gives some mathemat-
ical preliminaries required in the analysis. Section IV provides
an exact analysis for the case of two source antennas. Sections V
and VI consider the case of arbitrary numbers of sources and
develop accurate approximations of capacity. Results and con-
clusions appear in Sections VII and VIII, respectively.

II. SYSTEM MODEL

Consider a MIMO-MAC link with M BSs and W users op-
erating over a Rayleigh channel, where BS i has ng, receive
antennas and user ¢ has n; antennas. The total number of re-
ceive antennas is denoted np = Z); ng, and the total number
of transmit antennas is denoted N = Z}L n;. An example of
such a system is shown in Fig. 1, where three BSs are linked by
a backhaul processing unit and communicate with multiple, mo-
bile users. All channels are considered to be independent since
the correlated channel scenario can be transformed into the in-
dependent case as shown in Section II-A. The system equation
is given by

r=Hs+mn, (1)
where r is the C""*1 receive vector, s is the combined ¢V *!
transmitted vector from the W users, » is an additive white
Gaussian noise vector, n ~ CA (07 021), and H € ¢nrxN
is the composite channel matrix containing the W channel ma-
trices from the W users. The ergodic sum capacity of the link
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Fig. 1. Network MIMO system with a three-sector cluster. To reduce the
clutter, only paths from a single source are shown.

depends on the availability of CSI at the transmitter side. In par-
ticular, ifno CSI at the transmitter is assumed, the corresponding
ergodic sum capacity is [3, p. 57]

5 (0} = £ {log, )

1
I+—2HHH‘},
g

where F {|s;|*} = 1,7 = 1,2,..., N, is the power of each
transmitted symbol. It is convenient to label each column of H
as h;,,i = 1,2,...,N,so that H = (hy,hs,...,hy). The
covariance matrix of hy, is defined by Py, = E hkhf and
Py = diag (Pig, Por, . .., Puyi). Hence, the (i, k) —th ele-
ment of H is CA/ (0,l P;1.). Using this notation, we can also ex-
press hy, as by, = P} uy, where u;, ~ CA (0, I). Note that, for
convenience, all the power information is contained in the P,
matrices so that there is no normalization of the channel and, in
(2), the scaling factor in the capacity equation is simply 1/52.

A. Correlated Channels

Consider the general scenario where sources and/or BSs have
multiple colocated antennas for transmission and reception.
Here, spatial correlation may be present due to the colocated
antennas [21], [26]. If a Kronecker correlation model is as-
sumed, then the composite channel matrix is given by

2 L
Rﬁl 0 Hu,’ll P HU?,:[VV Rtgl O
H: .. : .. ) : . 7
1 ’ : -
0 RTZAI H“"J\’fl . 'Hw,]H’VV 0 RtQVV
3)

where the C™%: ™ matrix, H,, ;x, has i.i.d. elements since all
the channel powers from user & to BS ¢ are the same. The ma-
trix R,; is the receive correlation matrix at BS ¢ and the ma-
trix B,y is the transmit correlation matrix at source % as defined
in [26]. Using the spectral decompositions, R,.; = <I>TZ-A,41-<I>Z
and Ry, = @tkAthﬁ, and substituting (3) into (2), it is easily
shown that the capacity with the channel in (3) is statistically
identical to the capacity with channel

Aél 0 H'zu,ll v H‘ll),l"v At% 0
H: . .

=

. 1 . . .- |
0 A3, \Huyan.. Hynw 0 Az

Restrictions apply.
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Denoting (4) by H = A,% H MAE , we see that correlation is
equivalent to a scaling of the channel by the relevant eigen-
values in A, and A;. In particular, the (u,¢) th element of H
has power Ar,uuAt,vruPuv, where P, is the single link power
from transmit antenna v to receive antenna u. Hence, corre-
lation can be handled by the same methodology developed in
Sections IV-VI, with suitably scaled power values.!

III. PRELIMINARIES

In this section, we state some useful results which will be used
extensively throughout the paper.

Let A = (aix) be an m x n rectangular matrix over the com-
mutative ring, m < n. The permanent of A, written Perm (A),
is defined by

Perm (A) = Z 01,6102,05 + - By » 5)

[od

where the summation extends over all one-to-one func-
tions from {1,...,m} to {1,...,n}. The sequence
(61,6,02,65 - - - Um.e,, ) is called a diagonal of A, and the
product @ 5, G2 5, . - . m,qs,, is a diagonal product of A. Thus,
the permanent of A is the sum of all diagonal products of A.
Lemma 1 [27]: Let X be an m X n random matrix with
independent zero mean Gaussian distributed elements with,

E{|Xul?*} E{|X1.?}
A=E{XoX} 2 E{|X2]?} E {|Xan|"}

E |XW |2 E |).(.n.1n‘2

{1Xma?} { } ©

where o represents the Hadamard product. The matrix X is the
elementwise conjugate of X. With this notation, the following
identity holds:

m=nm
m > n,

E{lxx]y = { b )

where perm(.) and Perm (.) are the permanent of a square ma-
trix and rectangular matrix, respectively, as defined in [28].

Corollary 1: Let X be an m X n random matrix with
F {X o X } = A, where A is an m X n deterministic matrix
and m > n. If the m X m deterministic matrix ¥ is diagonal,
then the following identity holds:

E{|X"5X|} = Perm (ZA). 7

Proof:1 The 1result follows directly from Lemma 1 and the
fact that £2 o ¥2 = ¥ for any diagonal matrix. |
Next, we give a definition for the elementary symmetric func-

tion (esf) of degree % in n variables, X1, Xo,..., X,, [29]. Let
er (X1, Xa,...,X,,) be the kth degree esf; then
er (X1, X2, X)) = > X, ... X, (8

1<l <la<..<lp<n

! Arbitrary fixed transmit power control techniques can also be handled in the
same way as for the correlated scenario.
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It is apparent from (8) that eq (X1, X5....,X,,) = 1 and
en (X1, Xo,..., Xpn) = X1X2...X,. In general, the esf of
degree % in n variables, for any £ < m, is formed by adding
together all distinct products of & distinct variables.

Lemma 2 [29]: let X be an n X n complex symmetric posi-
tive-definite matrix with eigenvalues A1, . .., A,. Then, the fol-
lowing identity holds:

er (A, A2, .., A,) =T (X)), 9
where
> [ Xow 1<k<n
Trp(X)=<1 k=0 (10)
0 k>n,

and oy, is an ordered subset of {n} = {1,...,n} of length k&
and the summation is over all such subsets. X ,;,  denotes the
principal submatrix of X formed by taking only the rows and
columns indexed by oy, .

In general, X7/ denotes the submatrix of X formed
by taking only the rows and columns indexed by o, and
fi¢.n, respectively, where oy, and g, are length / subsets
of {1,2,..., n}. If either o¢,, or ps, contains the complete

set (e, ovrn, = {1.2,...,n} or pe, = {1,2,...,n}), the
corresponding subscript/superscript may be dropped. When
T¢m = Hhe.n, only one subscript/superscript may be shown for
brevity.

Next, we present three axiomatic identities for permanents
which are required in Section V.

1) Axiom I: For an empty matrix, A,

Perm (A) = 1. 1

2) Axiom 2: Let A be an arbitrary m x n matrix, then
Z Perm ((A4)"%") = Z Perm <(A)on.m) =1.  (12)

3) Axiom 3: Let A be an arbitrary m x n matrix, then

Z Perm <(A)ak,m) = Z Perm ((A)7*™).  (13)

IV. EXACT SMALL SYSTEM ANALYSIS

In this section, we derive the exact ergodic sum capacity in
(2) for the N = 2 case. This corresponds to two single-antenna
users or a single user with two distributed antennas. Here, the
channel matrix becomes H = (h1, h) and it is straightforward
to write (2) as

1 1. u
It~ <I+§h1h1 )

E{C}n2=F {ln

+FE {ln

20+ 0.

1 H
I+ ;hliﬁ

1
hohi

}

(14)
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Both €7 and C5 can be expressed as scalars [30], [31, p. 48], so
the capacity analysis simply requires

o :E{ln (1+ izh{fhl)}, (15)
g

-1
1 1
Cy=E {hl (1+—2h§ <I+—2h1hf> h2> } - (16)
ag a

In order to facilitate our analysis, it is useful to avoid the loga-
rithm representations in (15) and (16). We exchange logarithms
for exponentials as follows. First, we note the identity

1 e's}
- = / e “dt, for a>0. 17
4 Jo
Now (17) can be used to find In ¢ as follows:
ol -
e _ / eotdt, (18)
da 0
lna a 0
/ dlna :/ / e “dtda, (19)
0 1 Jo
o —t _ —at
na = / £ T (20)
0 i

This manipulation is useful because there are many results
which can be applied to exponentials of quadratic forms,
whereas few results exist for logarithms. As an example, using
(20) in (15) gives

{ P L }
Cr = E / aths. @
Jo t

Note that @ = 1+ L h{’h; has been used in (20). Since a > 1,
it follows that the integrand in (21) is nonnegative. Also, the ex-
pected value, C1, is clearly finite, and so, by Fubini’s theorem,
the order of expectation and integration in (21) may be inter-
changed. Using the Gaussian integral identity [9], the expecta-
tion in (21) can be computed to give

00—t ot
C :/ — = ——dt,
' o 1 F

where ¥ =T+ J%Pl. Hence, the log-exponential conversion
in (20) leads to a manageable integral for C'; . Note that there are
many alternative routes to derive C;. Similar quadratic forms
are common in communication problems and related work can
be found in [32] and [33]. This particular approach is useful here
as it applies to both 1 and Cs. It is also useful in Section V
where more than two source antennas are considered. Using the
same approach and applying (20) in (16) gives

(22)

%o ot ,t-FThy (T+ ki) hy
Cy=E / - - diy. (23)
0 t t
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The expectation in (23) has to be calculated in two stages. First,
the expectation over ho can be solved using the Gaussian inte-
gral identity [9] and, with some simplifications, we arrive at

00—t et (02 + h{{h1>
02:/ — - E dt, (24)
0

h
t RN (02 n hfZ;lhl)
where ¥ = I + %Pg. Interchange of the expectation and

integral in (24) follows from the same arguments used for C}.
Equation (24) can be further simplified to give

ge el 67t €7t
Cy = / £
Joo T 1[X]

— B L/“ e 'hi P25 by
1o Jo t|22|(02+h{12;1h1)

dty. (25)

Defining the third term in (25) as I, the ergodic sum capacity,
E(C) = Cy 4 Cy, becomes

E{C}:ﬁ{ZIak—Ib}, (26)

k=1

where
(27)

oo/t et
= [T (S )
: 0 t t|2k|

Substituting for £y, into (27) and expanding (¢ |£|) " gives

nR 20 (;*t
L= / —dt, (28)
’ lz:; 70 t+ g,‘k
where
Pyt
. (29)

= 17 (P — Pu)

Note that the first e ~* /¢ term in (27) cancels out with one of the
terms in the partial fraction expansion leaving only the linear
terms shown in the denominator of (28). The integrals in (28)
can be solved in closed form [34] to give

UEZ o2 a?
I, = ;mk@m B (m) . (30)
In order to compute [,,, we use [9, Lemma 1] to give
oo o /—t OF —8121—0>20
Iy =— / / et OEfe } dbsdt, (31)
b do =l T ee |

where z; = hfIszglhl and zo = o2 + h{iﬁglhl. The ex-
pectation in (31) can be solved as in [9], and with some manip-
ulations, we arrive at

e
0 J0 691

dadt.

|I+tP2+91P1P2+(92P1| 6. -0
T3

efcrztfazﬁg ]
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In Appendix A, I in (32) is calculated in closed form and the
final result is given by
- Nrbikl)

ng MR NR é-zkl (N[b ol

DI

=1 k#i [#i.k

I, =
’ |P1P2

) -~ 33)
where My, ,, Ni.,,, Ji, and &;x; are given in (90), (91), (68), and
(78), respectively. Then, the final result becomes

E{C} =i~ {Znir}ke zkEl( m)

k=11i=1
o o on &g (M, — Mo, )

DD PP PR

i=1 k#i l#£k

LPer
(34)

Note that the final result is a complex function of the channel
powers which also appear inside the exponential integral.
Hence, further optimization of system parameters, such as
transmit powers, will be difficult.

V. APPROXIMATE GENERAL ANALYSIS

In this section, we present an approximate ergodic sum rate
capacity analysis for the case where ng > N > 2. Extending
this to N > npg is a simple extension of the current analysis.
We use the following notation for the channel matrix:

H= (H\h\) (35a)
= (Hy 1. hy 1. hy) (35b)
_ (m,hk N .,hN,l,hN) (35¢)
z (hl,h2; . hy) (35d)

where the ng x (k — 1) matrix, H ., comprises the £ —1 columns
to the left of Ay in H. Using the same representation as in (14),
the ergodic sum capacity is defined [3] as

E{C}2£Y"Cy,

k=1

(36)

Ck:E{ln } (37)
_ 1y 1o o—m\

Applying (20) to (38) gives

oo, —t
Ck:/ S
Jo 1

where

—1
1 1 ~ -1

I+—2<I+—2Hka> hihi!
g g

¢ 021+g5m\

a—— (39)
t1%]|o2r + HL 8 Hk‘
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where ¥, = I+ J%Pk. In order to calculate the second term in
(39), the following expectation needs to be calculated:

~ - (40)
‘021 + HfS,ZIHk,’

Exact analysis of I () is cumbersome, and even the N = 2
case [see the J;, calculation in (32)] is complicated. Hence, we
employ a Laplace type approximation [35], so that I}, (¢) can be
approximated by

UZI—O-I:I,?I:IIC‘}

i L P
% ) ~ — . 41

R A= e
Note that the Laplace approximation is better known for ratios
of scalar quadratic forms [35]. However, the identity in both
the numerator and denominator of (40) can be expressed as the
limit of a Wishart matrix as in [37]. This gives (40) as the ratio
of determinants of matrix quadratic forms which in turn can be
decomposed to give a product of scalar quadratic forms as in
Appendix B and [38]. Hence, the Laplace approximation for
(40) has some motivation in the work of Lieberman [35]. It can
also be thought of as a first-order delta expansion [39]. From
Appendix C, the expectation in the numerator of (41) is given

by
E{‘T21+ﬁfﬁk‘} ZZPLnn Q)7 1)( )]"*"7*17
=0 o
(42)

where @Q,. is defined in (102). Note that this derivation is not
new and is given in [27]. However, it is convenient to include
Appendix C so that all required derivations can be found. From
Appendix D, the expectation in the denominator of (41) is given
by

5] E{‘UQI+ ﬁfz;lﬁk‘} = i How,  (43)
=0
where ¢y is given in (112). Therefore, I, () becomes
Ip (t) ~ Z"R(?;Cn)pkz (44)
. e@ s
Prnr 22120 (L;t—:;) t!
B Phkng l%éi?ét)-i- Wit) (46)
where
k-1
W=D D Perm (@)™ ) (o) @)

=0 o

Note that wy; > 0 for all/, & from Descartes’ rule of signs as all
the coefficients of the monomial in the denominator of (45) are
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positive. Also note that, from (112), we have © (@) = @ko-
Applying (46) in (39) gives

et oo et
Ok >~ / ' n dt.
ot @y tIIE (4 wr)

Using a partial fraction expansion for the product in the denom-
inator of the second term of (48) gives

(43)

L Go o~ Cu
T = ) : (49)
tHl:l (1‘ + wkl) t —1 t + Wil
where
1 Plng
=1 = 50
Cko Hu21 Wi, Pko ( )
and
Gt = : (51)
“ Wkl Hzggl (wk:u - wk:l) ’
Applying (49) in (48) gives
Cp = R ZR / Ty, (52)
Prng T Jo T+ wr
ng
= LN G By (wn) (53)

Pkng -1

Then, applying (53) in (36) gives the final approximate ergodic
sum rate capacity as

N nR
E{C}= ﬁ > ( kO > (et By (wkl)> L)

k=1 Pknp -1

Note the simplicity of the general approximation in (54) in com-
parison to the two-user exact results in (34).

VI. SIMPLE CAPACITY BOUND

In this section, we consider the simple upper bound given
in [27] for the ergodic capacity in (2). This provides a simpler
relationship between the average link powers and ergodic sum
capacity at the expense of a loss in accuracy.

The result can be given as

N
E{C} <log, (Z Z Perm (P(”'N)'_yi) , (55)

=0 o

N
= log, (Z 1971”_Yi> :
1=0

(56)
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where P = (P,;;,) and ¥ = . The simplicity of (55) is hidden
by the permanent form. For small systems, expanding the per-
manent reveals the simple relationship between the upper bound
and the channel powers. Forng = N = 2andng = N = 3,
(56) gives the upper bounds in (57) and (58), shown at the
bottom of the page, respectively. These bounds show the simple
pattern where cross products of L channel powers scale the 7%
term. Hence, at low signal-to-noise ratio (SNR) where the %
term is dominant, log, (1 + Pr¥), where Pr = >, >~ Pi, is
an approximation to (56). Similarly, at high SNR, the 5™V term
is dominant and log, (1 + Perm (P)5") is an approximation.
These approximations show that capacity is affected by the sum
of the channel powers at low SNR, whereas at high SNR, the
cross products of /N powers become important.

VII. NUMERICAL AND SIMULATION RESULTS

For the numerical results, we consider three distributed BSs
with either a single receive antenna or two antennas. For a two-
source system, we parameterize the system by three parameters,
p,S,and « asin [8] and [9]. The average received SNR is defined
by p = Pr/c?. In particular for a two-source system, p =
(Tr (Py) + Tr (P3)) /o®. The total signal-to-interference ratio
is defined by ¢ = Tr(Py) /Tr (P2). The spread of the signal
power across the three BS locations is assumed to follow an
exponential profile, as in [37], so that a range of possibilities can
be covered with only one parameter. The exponential profile is
defined by

Py = Ki (a) "1, (59)
for receive location 7 € {1, 2,3} and source & where
Kp(a)=Te(Py)/(1+a+a®), k=12 (60)

and o > 0 is the parameter controlling the uniformity of the
powers across the antennas. Note that as &« — 0, the received
power is dominant at the first location, as « becomes large
(e > 1) the third location is dominant, and as o« — 1 there
is an even spread, as in the standard microdiversity scenario.
Using these parameters, eight scenarios are given in Table I
for the case of two single-antenna users. In Fig. 2, we explore
the capacity of scenarios S1-S4, where nr = 3. The capacity
result in (34) agrees with the simulations for all scenarios, thus
verifying the exact analysis. Furthermore, the approximation in
(54) is shown to be extremely accurate. All capacity results are
extremely similar except for S1, where both sources have their
dominant path at the first receive antenna. Here, the system

EA{C} <log, (1 + 7 (P11 4 Pia + Poy + Pao) +7° (P11 Pas + P12P21))

(57)

E{C} <logy (1 +7 (P11 + Pia+ Pis + Por + Pos 4+ Pos + P51 + Psp + Ps3)
+ 4% (P11 Pag + P11 Pas + Pay Pio + Po1 Pyg + Py Pio + Py Poo + Py Pog + Pi1 Pay + Poy Prs
+ Py Pyy + Py1 Pis 4 Py Pos + Pi1aPos + PiaPss + Pos Pig + Poo Pag + P3a Py + Pso Poy)

+ 4% (P11 Pay P33 + Py1 Pog Pag + ProPoy Py + Pio Py Pog + P13 Poy Pao + P13P22P31))

(58)
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18 T T T T T
Simulation
180 - —. Analytical approximation
Exact 4

Ergodic Capacity bits/s/Hz

0 5 10 15 20 25 30
p [dB]

Fig. 2. Exact, approximated, and simulated ergodic sum capacity in flat
Rayleigh fading for scenarios S1-S4 with parameters: ngz = 3, N = W = 2,
and¢ = 1.

16 T T T T T
Simulation

S7

-
N
T

== Analytical approximation
® Exact

- -
o N

Ergodic Capacity bits/s/Hz
[o2]

0 5 10 15 20 25 30
p [dB]

Fig. 3. Exact, approximated, and simulated ergodic sum capacity in flat
Rayleigh fading for scenarios S5-S8 with parameters: ng = 3, N = W = 2,
and ¢ = 10.

is largely overloaded (two strong signals at a single antenna)
and the performance is lower. The similarity of S3 and S4 is
interesting as they represent very different systems. In S3, the
two users are essentially separated with the dominant channels
being at different antennas. In S4, both users have power
equally spread over all antennas so the users are sharing all
available channels. Fig. 3 follows the same pattern with S6 (the
overloaded case) being lower and the other scenarios almost
equivalent. In Fig. 3, the overall capacity level is reduced in
comparison to Fig. 2 as ¢ = 10 implies a weaker second source.

Figs. 4 and 5 show results for a random drop scenario with
M=ng=3W=N=3andng=6M=3W=N=
6, respectively. In each random drop, uniform random locations
are created for the users and lognormal shadow fading and path
loss are considered, where osp = 8 dB (standard deviation of
shadow fading) and v = 3.5 (path loss exponent). The transmit

5263

TABLE I
PARAMETERS FOR FIGS. 2 AND 3

Decay Parameter
Sc. No. | User 1 User 2 IS
S1 a=01|a=01]|1
S2 a=01]|a=1 1
S3 a=01|a=10 1
S4 a=1 a=1 1
S5 a=01|a=01|10
S6 a=01|a=1 10
S7 a=01|a=10 |10
S8 a=1 a=0.1]10
22 T T T T T T
— Simulation

Analytical approximation

Ergodic Capacity bits/s/Hz

0 L | | L | |
-5 0 5 10 15 20 25 30

p [dB]

Fig. 4. Approximated and simulated ergodic sum capacity in flat Rayleigh
fading for M = ng = 3, W = N = 3, and four random drops.

35 T T T T T T
— Simulation
----- Analytical approximation

30

Ergodic Capacity bits/s/Hz

-5 0 5 10 15 20 25 30
p [dB]

Fig. 5. Approximated and simulated ergodic sum capacity in flat Rayleigh
fading forng = 6, M = 3,W = N = 6, and four random drops.

power of the sources is scaled so that all locations in the cov-
erage area have a maximum received SNR greater than 3 dB,
at least 95% of the time. The maximum SNR is taken over the
three BSs. Hence, each drop produces a different P matrix and
independent channels are assumed. The excellent agreement be-
tween the approximation in (54) and the simulations in both
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18 T T T T T T T p,
Simulation // >
16r| e Exact // 1
P Analytical approx. /9/ ]
i - —#*— Upper bound ///
Z 4o} |~ High SNR approx. // J
(2}
£ -=0—-" Low SNR approx. /ﬁ
7 4
3] e
g -
2
S J
o0
m
25 30

p [dB]

Fig. 6. Ergodic sum capacity in flat Rayleigh fading for scenario S3 with pa-
rameters: M = ng =3, W =N =2, and¢ = 1.

Figs. 4 and 5 is encouraging as this demonstrates the accuracy
of (54) over different system sizes as well as over completely
different sets of channel powers. Note that at high SNR, Fig. 5
gives much higher capacity values than Fig. 4 since there are six
receive antenna rather than three. In this high-SNR region, the
4N term in (56) dominates and capacity can be approximated
by log, (1 + Perm (P)4™). With ng = N = 3, there are six
cross products in Perm (P), whereas with ng = N = 6, there
are 720 cross products. Hence, the bound clearly demonstrates
the benefits of increased antenna numbers. In practice, there is
a tradeoff between the costs of increased collaboration between
possibly distant BSs and the resulting increase in system ca-
pacity. In Figs. 2-5, at low SNR, the capacity is controlled by
Pr.Hence, since p = Pr/ o2, all four drops have similar perfor-
mance at low SNR and diverge at higher SNR where the channel
profiles affect the results. The upper bound and associated ap-
proximations are shown in Figs. 6 and 7 both for a two-user
scenario (S3) and a random drop. In Fig. 6, the upper bound
is shown for scenario S3 as well as the high- and low-SNR
approximations. The results clearly show the loss in accuracy
resulting from the use of the simple Jensen bound. However,
the bound is quite reasonable over the whole SNR range. The
low-SNR approximations are quite reasonable below 0 dB and
the high-SNR version is as accurate as the bound above 15 dB.
In Fig. 7, similar results are shown for a random drop with
M = ng = 6,W = N = 6. Here, similar patterns are ob-
served, but the low- and high-SNR approximations become rea-
sonable at more widely spread SNR values. For example, the
low-SNR results are accurate below 0 dB and the high-SNR re-
sults are poor until around 30 dB. In contrast, the upper bound is
reasonable throughout. Hence, although there is a noticeable ca-
pacity error at high SNR, the cross-product coefficients in (57)
and (58) are seen to explain the large majority of the ergodic
capacity behavior.

In Fig. 8, we compare the accuracy of the proposed approx-
imation in (54) with the approximation based on asymptotic
methods found in [21]. In particular, we consider (2,2), (4,4)
(6,2), and (5,3) systems with an average channel power of 5 dB.
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35 T T T T T T T

— Simulation

o i Analytical approx.
—#*— Upper Bound

-—¢—" High SNR approx.

" / 4
B0 —o--Low SNR approx. /£

20

15

Ergodic Capacity bits/s/Hz

30

Fig. 7. Ergodic sum capacity in flat Rayleigh fading for a random drop with
parameters: ng = 6, M = 3,and W = N = 6.
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-0.2 0 0.2 0.4 0.6 0.8
Capacity Error [bits/s/Hz]

Fig. 8. Simulated capacity error for (2,2), (4,4) (6,2), and (5,3) size systems
with an average channel power of 5 dB.

The individual entries of P are generalized as i.i.d. lognormals
with a standard deviation of 8 dB. This generates a wide range
of P matrices with entries which mimic those encountered in
systems experiencing shadow fading. The i.i.d. lognormals are
then scaled to give an average link power of 5 dB. The capacity
of the MIMO system with a given P matrix is then computed via
simulation (using 100 000 trials), using (54) and using (89)—(91)
in [21]. This is repeated 10 000 times to give 10 000 errors based
on (54), denoted e,pprox, and 10000 errors based on [21], de-
noted €,5ymp. The errors are compared via the capacity error de-
fined by €asymp — Capprox. The cumulative distribution function
of the capacity error is given in Fig. 8 for four system sizes. We
observe that (54) is more accurate than [21] at least 80-90% of
the time. Also, increasing asymmetry and reduced system size
makes (54) relatively more accurate.

It may be practically important to compare the accuracy of the
approximations in terms of the SNR (expressed in dB) required
to achieve the same spectral efficiency. Therefore, in Fig. 9, we
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Fig. 9. Simulated SNR difference for (2,2), (4,4), (6,2), and (5,3) size systems
with an average channel power of 5 dB.

compare the SNR error of both approximations using 10 000
macrodiversity power profiles (i.e., P matrices). We compute
the ergodic capacity of all considered system sizes by simu-
lation at 4 = 5 dB. We then reverse calculate the 7 values
at which the approximations in [21] and (54) give the above
spectral efficiency. This allow us to calculate the SNR error of
the approximation proposed in this paper, denoted by snr,,prox,
and the SNR error of the approximation in [21], denoted by
SNTaeymp. 1he errors are compared via the SNR difference, de-
fined by $nTasymp — S0Tapprox, following the same procedure as
in the capacity error analysis in Fig. 8. The cumulative distri-
bution function of the SNR difference is given in Fig. 9 for all
system sizes. We observe that the SNR difference also exhibits
favorable behavior to the approximation presented in this paper.
However, in a vast majority of cases, the difference is less than
1 dB.

VIII. CONCLUSION

In this paper, we have studied the ergodic sum capacity of
a Rayleigh fading macrodiversity MIMO-MAC. The results
obtained are shown to be valid for both independent channels
and correlated channels, which may occur when some of the
distributed transmit/receive locations have closely spaced
antennas. In particular, we derive exact results for the systems
with at most two transmit antennas and approximate results for
the general case. The approximations have a simple form and
are shown to be very accurate over a wide range of channel
powers.

APPENDIX A
DERIVATION OF 1,

From (32), I;, can be written as

ol
a0,

I, = (61)

5265
where
e 7 t—o“8,
_ _ i dfsdt.
-/0 /0 [ (1 + Py + 61 P Pio + 62P;1) :
(62)
From (62), L; becomes
70 2t—0" 62
Ly = / / dfsdt.
o Jo IIE 61+P2+P +P1P)
(63)
Defining
— |P1Po| I, (64)
we use a partial fraction expansion in f; to give
"R 92 ) ‘702157«7202
Ly = Z / / ’ dfsdt, (65)
91 + 5+ 2+ Pulplz)
where
A, (02.1) = ! (66a)
L [Te%; (ainbo + Bint + vix)
1 1 1
ik = 55— v Bik=5——
Y= P Pa P P Pn (66b)
1
it =R —R;, R;= . 66
ik . Pi1 Py (66c)
To compute (65), the following substitutions are employed:
uw= ot + 020, (67a)
t o
TPl Py (676)

The Jacobian of the transformation in (67b) can be calculated as

. 1 1
.= 2 —
Ji=0o ( o Pﬂ) . (68)
Substituting (67b) and (68) into (65) gives
X Pae? Ay (u,v5) e
L dv;d 69
b= ZA / UZ+91+R)1} U, (69)
where
A, (i, v3) ! (70a)
i\, V) = [ a
[Tiii (aanvi + bigw + vir)
o2
ain = - (vir — Bin) (70b)
1 [ Bix  our
bip = — - .
YT (PiQ Pil) (70¢)

The term A; (u, v;) in (70a) can be written as a summation using

partial fractions, to give

A7- (u U,,-) _ iﬂ: Bik (U) ; (71)
T vt diku ot T
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where
((Iik)nR73
Bip(u) = =5 72a
() [ g (cirrn + dirt) (722)
cinl = byog, — aiby (72b)
il = QinYit — YikGil (72¢)
b .
(_Izik,:)kn ri = LK (72d)
ik ik
Substituting (71) into (69) and simplifying gives
IS [ TLT By, (u)e ™
Ly = Z Z/o / u J;
1=1 k#i P12
dv;du
X . (73
(v + 01+ R;) (vi + qaru + 7ix) 73)
First, we integrate over v; in (73) to give
np nNpg _,
B * Cig (u,bh) e
DN
i=1 k#i
[ (Pz:?tfz + 81 + Ri> ()\,;ku + Tik)-l
x In = du, (74)
[ (pf(,z +0; + R;,) (iru + 7'ik)J
where
Ci (u,81) = 75
ke (w,61) giru + 1y — 0 — R; (752)
1
/\i . = T ik
Sl o + qik (75b)
1
= —— + gin. 75
Mk =53 + Gik (75¢)
Let
(# + 01 + Ri) (Aipw + i)
Dy (u,61) =1n = . (76a)

<# + 01+ RL) (pigw + i)

Then, B;;, (u) in (72a) can be rewritten as the summation
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where
(aigcind)™™ >
ikt 11220 k1 (dikscine — cazdina) 7%
Substituting (77) and (75c¢) into (74) gives
ngp MR NR fove) £‘kl
L=355 [ puwe
i=1 ki l£i k70 *
du
X . (79
(Ciru + ding) (qixw + i — 01 — Ry) (79
Equation (79) can be further simplified to give
nyr nNg ng
_ Cirt (Mo, — Noy)
3
1=1 k#¢ 1#ik
where
> Dik (u,61) du
M, B = - , 81
bu /0 AR
> D (u, 8 du
N, = e (u,6q) u 82)

oS fi(6) (ut f2(01)

and e;5; = dixi/cirr- Next, we introduce the following linear
functions of €5 :

J1(P1) = nigr — ciribr (83)
17}

fa (61) = mipg — —, (34)

ik

where
Cikl
il = TikCikl — ikiQir — ij (85)
Vik 1

iy = T . 86
R S 3 (86)

Next, we can differentiate Mp,,, and Ny, and integrate over u
to give the final result along with (61) and (64). Hence, from (83)
and (76a), we get (87). Substituting (87) into (81) and (82), we

R
Bix (u) = % (77) get (88) and (89). Equations (88) and (89), shown at the bottom
P U diki of the page, can be solved in closed form to give (90) and (91),
i [Dik (u, 91)] _ Citd n (—p%;lgz + Ri) ()\i,ku + 77k) L Ppo? B P;o? 87)
ot fi(61) 61=0 ikl (Pv,:f’aZ + RL) (phigvs + 7ig) Tkl (u + ;—21) (u + ;—i)
My, = — =/ 2 |—0 — 88
b 1 ly—o Jo 00 [ f1(01) gy o (u+em) (88)
Nb _ ONy,,., _ - i |:Dikf (u, 91):| du /OO |:D¢k (u, 91):| 1/ g du (89)
K 891 8,=0 Jo 891 fl (91) 61=0 ('LL + 77Likl) 0 fl (61) 0, =0 (u + /”Lz',k‘l)z
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shown at the bottom of the page, where we have used the two
integrals defined as follows:

° e ln (ct
Hﬂma@:/ e 'In(ct+a),,

J0 t"‘b

" e~tn (ct
(o) = | e Inlctta),

Jo (t+0)

and the constants are given by

2\ 1 2\ L
E/ = (E'kl g ) E” = (E'kl d )
ikl — tkl — 9 ikl — ikl — 3
Py Py
AN 2y 1
77’1/ = (m'“ g > 7’)’1” = (777‘“ d )
ikl — tkl — 2 ikl — ikl T .
Py Py

Both H; and H> can be solved in closed form as

Hl(a,b,c) =e [ 1 (W Ine+ Dy (——b b)}

1 b b
H, ((Lb()—hl(,|ig€ El(b)]ZeD (;713 b)

e lm - (9]

where D1 (a, b) is defined by

e 'ln(t+a)

Di(a,b) = /bw .

dt, for b #NO.

APPENDIX B
EXTENDED LAPLACE-TYPE APPROXIMATION

Note the well-known fact that, 021 = E {AH A} ,forani.i.d.

complex Gaussian matrix ensemble, A, of CA” [ 0, ‘;—_> random
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variables, where A is a x X k— 1 matrix as in [37]. This result can
be rewritten in the limit to give 21 =
this in (40) gives

fm LAM A}, Using

£—0C

I (t) = lim E - » 92)
[Sk] ee APA+ IS
H g0\ (A
L (4" 1) (ir,)
lim F ,(93)
TR e A iyt A
Pl 2,:§ch
_ gy p{ BB (94)
|2k fo—00 |Bk ikBk|

where 5, = diag (I, 2;675) and B, =
well-known fact

( I:ﬁ ) Using the

k-1
~ ~H ~ -1 . g
|B£{Bk| = H kaL (I— Bki (Bkin,i) Bm‘) bkia (95)
i=1

from standard linear algebra, where by; is the ¢th column of
By, Bki is By with columns 1,2...¢ — 1 [

B (BkHlBkl) Bﬁ = 0, we can approximate (94) by the
expression in (96), shown at the bottom of the page, where by;
and B}, correspond to a large but finite value of x. Approxi-
mation (96) assumes that the terms in the product in (95) are
independent. This is only true when by,; contains i.i.d. elements.
However, in the macrodiversity case, all the elements of by,; are
not i.i.d. Nevertheless, part of by; (the contribution from A) is
i.i.d. This motivates the approximation in (96). Next, we apply
the standard Laplace type approximation [35] in (96) to give
(97)—(99). Hence, a combination of approximate independence,
the Laplace approximation for quadratic forms and the limiting
version in (92) gives rise to the approximation used in Section V.

~ Cikl 1 1
My, 2 [H1 (Ri7 €kl —P;202> + Hy (Tig, 2inas Aix) — Ha (Ri7 €kl —Pi10'2> — Hy (rir, 5ik=lul£ik:):|
E/'kl o2 0'2 o -] 0.2
ik Pi1 F — Sk : _ & Yo F S ; 90
o Ciki 1
Moo = N2, ik [HQ (Ri’mi’“l’ P.202> + Hy (135, mixt, Air) — Ho (Rumikh m) — H, (Tzikwmikl,vﬂik:)]
ikl Ti A )
Cikl 1 1
H RL ikly 5 o H ik 1Ty 7)\1‘/,—1{ Ri7 ikls == — H ks ikl Mik
+77’L2kl, [ 1( ikt P’£202>+ 1 {rie Mt i) 1( mkl’PuU?) 1 (Tiks Wik, fo k)}
mi, e o2 ‘ ml, [ 2 o2 ‘
ki P F) _ Mkl ; _ 3 £ | Mk ” o1
+ il [6 thy <Pi1 e 1 (k) . e i\ B, e 1 (M) 1)
~ ~ H ~ -1 H
1 k—1 bg (I By (B]”Bk,) Bkz) by
1E 1:[ (96)

_ _ . ~H - ~ -1 . g_
bl (m _ 5B, (Bkiszk.,;) Bk,i2k> be;
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The accuracy of this approach is numerically established in the
simulation results in Section VII.

APPENDIX C
~ H ~
CALCULATION OF E {‘021 +H, H, ‘}

This appendix is included for completeness. Original deriva-
tion can be found in [27]. Let A1, Ao, ..., Ax_1 be the ordered

~ H ~
eigenvalues of H, Hy. Since ng > (k — 1), all eigenvalues
are nonzero. Then,

E{‘a21+ilfﬁk’} :E{kl_[l(er—i—)\,;)}

=1
k—1 )

:E{Z Tei (A1, 1) (%) "'"‘1} ,

(100)

=0

where (100) is from (8) and Lemma 2. Therefore, the building

block of this expectation is </ {Tr,—, (f[ ka{ k) } From Lemma

2
~ H ~ ~ H ~
Tr; (Hk Hk) -y ‘(Hk Hk) (101)
o Tik—1
Therefore, from Lemma 1,
K {Tri (Hff]k)} = ZPenn (@) 1),
where the np x (k — 1) matrix, @, is given by
E{f]kof{k} - Q,. (102)

Note that summation in (102) has (
expression becomes

E{‘O_QI_’_Hfﬂk}:kZlZPeHn((Q

i=0 o

) terms. Then, the final

k)'fi‘k—l)(o_2)k—i—l .
(103)
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APPENDIX D

“Ho . 1~
CALCULATION OF |%},| E{ o?1+H, ¥%; lHk‘}

A simple extension of (42) allows the expectation in the de-
nominator of (41) to be calculated as

- H | k—i—
B{lor+ B 1} = Z%()( HETE (104
=0
where
ni (¢ ZPelm((z;le)m_l), (105)
and from (12)
Yro (1) = 1.
The term in (105) can be simplified using (13) to obtain
Perm ((QQE?”)
Ui () = e (106)
(O
Then,
o . = k—i-1
S B {|oT = I 2 T =Y 6 (0 (03)" 7
i=0
(107)

where &; (t) =

Eai (1 Z‘ S, ’Peun(Qk)“ﬁ*”), (108)

|34 | 1 (). From (106), we obtain
Ting

where &, i n, is the compliment of o;,,,. Therefore, it is
apparent that &, (¢) is a polynomial of degree np — i. Clearly
S| E { o1 + H, S, }
since &xg (¢) = |Xk| is the highest degree polynomial term in ¢
in (107). Then,

is a polynomial of degree ng,

- i (£>ITH (Pw,, .., ) (109)

=0

),

Fng—ing

- " H o~ -1 .
E {b{fi (1 — By (BfBL) Bf) bk,,-}

L
E—H i (e - SHeo = \ ! -H_ ’ ©7)
=1 F bki Ek — EkBkl, (Bluszkt> BkiEk bkt
_ ~ ~H - -1 . g
1 E {Hf_ll b (I — By (Bk:ini) Bki) bk:i}
2m 1 ~ — - *1~H7 . (98)
E {Hi——l by <2k — Y By; (Bk.,:szki) Bk,',zk) bzﬁz}
1 E{|BIB
L) o

" SIE (B}
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Hence, applying (109) in (108),
Ei (1)

an’L‘

=3 S (L) (@) e (@0),
g 1=0

and £; (1) becomes

ri (1) = 5 | Prii (110)

I
— _
S % |l
TN
QN| oy
N—’

3
g

L

TN
Q|H
- ~—

(111)

(ﬁklia

where

) Perm ((Qk)r{rszt}) ’

Orti = ZTYZ ((Pk)&,,ﬂ_i,m

and from (12), ¢xio simplifies to give

Grio = Ty (Py) .

Equation (111) follows from (110) due to the fact that

Try ((Pk) ) =0 for [>mng—1i.

Tnp—ing

Therefore, (104) can be written as

k—1 np

|2 ] E{‘(;?I—kﬁfgkflgk‘}zz Z £ G (o_g)kflfifl 7

=0 1=0

which, in turn, can be given as

nR
CH 4o~
SuE{|o* 1+ Hs =Y o,
=0

where

k-1 )
o =3 fui (o) (112)
=0
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