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Abstract—In this paper, an emerging wireless communication
concept, which is termed as spatial modulation (SM) for large-
scale multiple-input–multiple-output (MIMO), is considered. The
results show that from the information-theoretic perspective, SM
achieves capacity comparable to the open-loop MIMO capacity,
although a subset of transmit antennas is activated in every chan-
nel use because both the channel coefficients and the input symbols
carry information in SM. As a result, SM compensates the loss of
information capacity due to a subset of antennas being activated
by modulating information in the antenna index; therefore, the
total information rate remains high. In particular, an upper bound
for the capacity of SM is derived in closed form, and it is shown
analytically that this upper bound is almost certainly achievable in
the massive MIMO regime. Moreover, it is shown that the upper
bound is achievable with no channel state information at the trans-
mitter (CSIT) but with channel distribution information (CDI)
at the transmitter (CDIT). The optimum transmission strategy
should adapt the channel input distribution to fading using CDI
such as the K factor in Rician fading or the shape parameter m
in Nakagami-m fading.

Index Terms—Capacity, channel distribution information
(CDI), channel state information (CSI), channel state information
at the transmitter (CSIT), massive multiple-input multiple-output
(MIMO), spatial modulation (SM).

I. INTRODUCTION

MULTIPLE-INPUT MULTIPLE-OUTPUT (MIMO) is a
technology for increasing the link capacity and/or relia-

bility in modern communication systems. Multielement anten-
nas are used in many scenarios such as point-to-point links [1],
[2], multiuser links [3], and macrodiversity links [4]. MIMO
can achieve higher throughput because multiple independent
spatial data streams can be transmitted in the same time and
frequency resource, and one of the key enablers for MIMO op-
eration is the rich scattering environment between transmit and
receive antennas [5]. The success of MIMO lies in the fact that
receivers can successfully separate the multiple data streams
transmitted by the transmitter with the assistance of channel
state information (CSI) at the receiver. It has been shown with
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massive MIMO that CSI at the transmitter (CSIT) can also
be used to increase the system capacity [6]. The widely used
transmission scheme for massive MIMO is multiuser MIMO
with linear precoding [7]. It has been shown that a massive
antenna array can be used to simultaneously serve a large
number of single-antenna users by sharing multiplexing gain
among them. The uncorrelated noise and small-scale fading
could be eliminated due to the averaging (hardening) effect.
The required transmitted energy per bit decreases as the number
of base-station antennas increases [8]. However, CSI overhead,
mobility, and RF power consumption can cause problems [7].
In particular, acquiring CSIT in frequency-division duplexing
system is a costly process. It has several phases that include
estimating CSI at the receiver and feeding back appropriate
information to the transmitter [9]. The feedback cost increases
with the number of constituent links in the MIMO links. There-
fore, on the one hand, there are considerable interests in finding
other energy-efficient transmission schemes for massive MIMO
with no CSIT. On the other hand, one of the main challenges
for future wireless communication systems is the increasingly
wide range of applications with varying requirements and char-
acteristics [10]. The future wireless communication systems
should therefore be smart, heterogeneous, and adaptive to time-
varying channel conditions [11]. In the future, a wide spectrum
of physical-layer (PHY) transmission schemes are required
to serve different users in different scenarios [12]. Therefore,
instead of relying on one PHY-layer transmission scheme, it is
essential to have different schemes with diverse characteristics.
There are potential transmission schemes for MIMO links in the
absence of CSIT. Among them, stand-alone space–time (ST)
code and spatial multiplexing (SMX) are prominent [13], [14].
In SMX, many independent data streams as the number of trans-
mit antennas are transmitted in a single use of the channel, and it
has been shown to have a reasonable decoding complexity [13].
In ST coding, redundancy is added to the transmit symbol to
provide multiple independent replicas of transmit data symbols
to the receiver.

In this paper, a simple information-based antenna switch-
ing technique termed spatial modulation (SM) is considered
as a possible transceiver solution for MIMO links with no
CSIT [15]–[17]. As explained in Section II, SM modulates
information in both the signal constellation and the antenna
index. In addition to its simplicity, the ability to control the
number of transmit RF chains in SM can be very important
from transmit energy efficiency perspective. In contrast to SMX
and ST coding, SM uses a subset of transmit antennas for data
transmission, and data is also modulated in the antenna index.
The operation and performance of SM are now well understood
[16]. The optimum detection of SM is investigated in [18], and
the average bit error probability in different fading scenarios
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Fig. 1. Large-scale MIMO system with a fewer number of receive antennas in
comparison with the number of transmit antennas.

is analyzed in [19]. The effect of channel estimation error and
the effect of antenna switching on the bandwidth efficiency
are investigated in [20] and [21], respectively. The channel
estimation of SM is considered in [22] and [23], and energy
efficiency of SM is studied in [24] and [25].

The main objective of this paper is to investigate the potential
gain of SM in the massive MIMO regime with no CSIT. In
particular, a MIMO scenario with a large number of transmit
antennas and a relatively fewer number of receive antennas is
considered, as shown in Fig. 1. This scenario typically occurs
in cellular downlink communication from a base station to a
user terminal. On the one hand, transmission schemes such as
vertical Bell laboratories layered space–time (V-BLAST) [13]
could be employed with random beamforming [26], and on the
other hand, stand-alone ST code could also be used for such
MIMO systems. Since both V-BLAST and ST code transmit
using all transmit antennas, their energy efficiency may not
scale well with the number of transmit antennas due to the large
number of power amplifiers if the RF power consumption is
also considered [27].

Firstly, we consider the information-theoretic capacity of
SM in additive white Gaussian noise (AWGN) channels and
fading. Unlike traditional MIMO links, the wireless channel
itself carries information; therefore, capacity analyses tend to
be more challenging. Capacity analysis has been reported in
several prior works [28], [29]. The approach in many reported
research is analyzing the information conveyed in the antenna
index and signal constellation separately. Moreover, their ca-
pacity analysis does not have a closed-form solution, which
could be used for further optimization. However, in this paper
a different approach is used in which the system is modeled
as two independent sources of information, constellation, and
antenna index with multiplicative interaction. This model al-
lows the calculation of the capacity in a more straightforward
manner. The optimal channel input distribution for SM is
analytically obtained. Then, the theoretical capacity results are
compared with mutual information (MI) results for SM with
suboptimal channel inputs, i.e., practical modulation schemes
such as quadrature amplitude modulation (QAM). The main
contributions of this paper are summarized as follows.

• An upper bound for the capacity of SM is derived in
closed form, and it is shown analytically that this upper

bound is almost certainly achievable in the massive MIMO
regime. Moreover, the capacity upper bound is achievable
with no CSIT, but channel distribution information at the
transmitter (CDIT). The optimum transmission strategy
should adapt the channel input distribution to fading using
channel distribution information (CDI) such as the K
factor in Rician fading or the shape parameter m in
Nakagami fading.

• Unlike in conventional MIMO, Gaussian input distribu-
tion is not in general optimal for SM MIMO, but in some
undesirable fading conditions, it can be approximately
optimal, e.g., high transmit correlation and high K factor
scenarios.

• In Rayleigh fading as N → ∞, 4-QAM is shown to be
optimal. The practical implications of this result are that,
in uncorrelated Rayleigh fading, transmitting as much
information as possible in the antenna index and keeping
the constellation order as low as possible are desirable.

• Antenna sets should be selected in such a way that the ith
data stream is transmitted from all antennas. For example,
if there are four transmit antennas, and two transmit
antennas are supposed to be active in each channel use,
(1, 2), (1, 3), (1, 4), (2, 3) is less favorable than (1, 2),
(3, 1), (4, 3), (2, 4).

• Although there is an optimum input distribution for SM
as N → ∞, simulation results show that it is not always
required to signal with the optimum input distribution to
achieve the capacity in finite N , but real constellations
such as M -QAM or, in some cases, Gaussian inputs are
also sufficient.

This paper contains the full mathematical derivations, extensive
numerical results, and extended discussions, and the initial
results of this paper were published in [30].

The remainder of this paper is laid out as follows. InSection II,
the system model is described. The existing analysis and its
drawbacks are discussed in Section III, followed by the main
analysis in Section IV. The analysis is extended to SM with
transmit correlation in Section V. Section VI provides numeri-
cal results, and Section VII gives the conclusion.

II. SYSTEM MODEL

A single-user point-to-point SM MIMO communication sys-
tem in fading with N transmit and nR receive antennas is
considered. Here, it is assumed that N � nR. The CnR×N

channel matrix H captures the fading between the transmit and
receive antenna arrays. The channel matrix H contains ele-
ments hik , which represents the normalized complex channel
gain between the transmit antenna k and the receive antenna
i, where E{|hik|2} = 1. The SM scheme considered here ac-
tivates several antennas for data transmission, and an indepen-
dent data stream is transmitted from each active antenna. The
set of active antennas is selected based on the information and
the total number of such sets generally has to be an integer
power of 2. There are

(
N
T

)
possible sets for a SM system

with T active antennas. It is assumed that only L sets are
configured as legal antenna sets for data transmission, and T
constellation symbols are directly transmitted from T active
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antennas. As a result, a binary block b with log2 L+ T log2 M
bits is transmitted in a single channel use. The first log2 L bits
are modulated in the antenna index, whereas the next T log2 M
bits are conventionally modulated using QAM constellation.
The first log2 L bits select which antenna set is activated in
the current channel use and the next T log2 M bits select the
symbols that are transmitted by active antennas. In this paper,
the set of active transmit antennas is denoted as Υi, where
Υi ∈ {Υ1, . . . ,ΥL}. The modulation in the antenna index in-
evitably incurs switching delays; this antenna switching delay
in SM transmission could cause some bandwidth expansion
[21]. This bandwidth expansion can be regarded as a result
of hardware limitation and is not a fundamental drawback of
SM MIMO from the theoretical point of view. Therefore, its
effect on spectral efficiency is omitted in this theoretical study.
The received baseband signal thus becomes

r =
√
pV x+ n (1)

where CnR×T matrix is V ∈ {H̃1, . . . , H̃L}. The matrix H̃i

is a submatrix of H , which consists of channel elements from
all active antennas in the set Υi to all receive antennas. The
{H̃1, . . . , H̃L} is denoted the alphabet of V . The CT×1 vector,
x = (x1, . . . , xT )

T is the constellation data signal with average
transmit power constraint E{xxH} = (Es/T )I. The constant
p is defined to capture the average link power drop between
the transmit antenna array and the receive antenna array due to
shadowing and path loss. Here, transmit precoding is omitted
due to the absence of CSIT; thus, independently coded data
are transmitted from each active antenna, as in the case of
V-BLAST transmission. For example, consider an SM system
with N = 4, T = 2. There are six possible sets, but only
four sets are selected as (1, 2), (1, 3), (1, 4), and (2, 3). The
modulator selects one of these four sets, depending on the first
two bits of the segment, and selects a 2 × 1 vector x from
a 4-QAM constellation, depending on the next 4 bits if 6-bit
transmission is desired. Furthermore, if more bits are desired
to be transmitted, higher order signal constellations have to be
employed. At the receiver, the maximum-likelihood decoder in
a Gaussian noise channel is employed as follows:

b̂ = argmin
V ,x

‖r −√
pV x‖ (2)

where ‖ · ‖ denotes the Euclidean vector norm.
In this paper, the fading is modeled statistically. Every chan-

nel element, hik is assumed drawn from a complex random
process Φ, with finite raw moments. This complex random
process consists of two independent and identically distrib-
uted (i.i.d.) real random processes (i.e., ∈ R). Let E{h�

I}, and
E{h�

Q} be the �th raw moments of real and imaginary random
processes that make up Φ, respectively. In Rayleigh fading, hik

is modeled as hik ∼ CN (0, 1), where CN (0, 1) denotes a zero
mean circularly symmetric complex Gaussian (ZMCSCG) ran-
dom variable (RV) with unit variance. Throughout this paper,
CSI denotes the channel matrix H , and CDI denotes the raw
moments of the fading random process Φ. CDI for some well-
known fading models are summarized in Table I.

TABLE I
CDI FOR DIFFERENT FADING MODELS

A. Mutual Information

The MI achievable by arbitrary transmission schemes with
practical constellations with perfect knowledge of the channel
at the receiver is reviewed. Numerical simulation shall en-
able interesting capacity comparisons with analytical results.
In summary, the objective is to simulate the MI between the
channel inputs V ,x and the channel output r. From [34], it is
given by

I(V ,x; r|H) = EV ,x,r

{
log2

(
Pr(r|V ,x,H)

Pr(r|H)

)}
(3)

where Pr(r|V ,x,H) is the conditional probability of r when
V , x, and H are known. For the discrete input V ,x, the MI
in (3) can be expressed as

I(V ,x; r|H) =
∑
V ,x

Pr(V ,x)

∫
Pr(r|V ,x,H)

× log2

(
Pr(r|V ,x,H)

Pr(r|H)

)
dr. (4)

A Monte Carlo estimate thereof is given by

I(V ,x; r|H) ≈ 1
n

∑
V ,x

Pr(V ,x)

×
n∑

l=1

log2

(
Pr(rl|V ,x,H)

Pr(rl|H)

)
(5)

where rl with l = 1, . . . , n are i.i.d. random samples drawn
from r. The conditional probability Pr(r|V ,x,H) for SM
becomes

Pr(r|V ,x,H) =
1

(πσ2)nR
e‖r−

√
pV x‖2 . (6)

The number n is chosen to be enough to generate a stable
value for I(V ,x; r|H). Note here that MI, which is evaluated
using (5), always saturates at H(V ,x). which is defined as [34]

H(V ,x) = EV ,x {− log2 (Pr(V ,x))} (7)

as Es/σ
2 → ∞, where H(·) denotes the differential entropy.

III. CURRENT CAPACITY RESULT AND ITS DRAWBACKS

The existing analysis calculates the capacity in two stages.
If the channel equation in (1) is considered, the MI between the
channel input and the output can be written as

I(x,V ; r) = I(x; r|V ) + I(V ; r) (8)
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where I(x; r|V ) is the MI between the constellation symbol
and r, and I(V ; r) is the MI achieved by modulating infor-
mation in the antenna index. The I(x; r|V ) is evaluated by
assuming the optimum input distribution for x, denoted here
as fx, is a Gaussian variate, and the corresponding capacity is

C1 = max
fx

I(x; r|V ) =
1
L

L∑
i=1

log2

∣∣∣∣1 +
pEs

Tσ2
H̃ iH̃

H

i

∣∣∣∣ . (A)

The second term on the right-hand side of (8) is more complex.
It is evaluated in the existing analysis by presuming the channel
input distribution fx as Gaussian; thus, the channel transfer
probability Pr(r|V = H̃ i) is

Pr(r|V = H̃ i) =
1

πnR |Σ|e
−rHΣ−1r (9)

where Σ = σ2I + (pEs/T )H̃iH̃
H

i , and the a priori proba-
bility Pr(V = H̃ i) = 1/L. The MI between V and r can be
written as

I(V ; r) =
1
L

L∑
i=1

∫
Pr(r|V = H̃ i)

× log2

(
Pr(r|V = H̃ i)

Pr(r)

)
dr (10)

where Pr(r) = 1/L
∑L

i=1 Pr(r|V = H̃i). The exact evalu-
ation of (10) seems difficult. From Monte Carlo integration
method as in (5), we have

I(V ; r) ≈ 1
Ln

L∑
i=1

n∑
l=1

log2

(
Pr(rl|V = H̃ i)

Pr(rl)

)
. (B)

The conclusion in [28] is that the sum of C1 and I(V ; r) in (10)
gives the capacity of SM. However, a fundamental weakness of
these assumptions is that the input distribution, fx is Gaussian
variate. It appears that fx affects both I(x; r|V ) and I(V ; r). It
is clear that Gaussian input distribution maximizes I(x; r|V ),
but it is unclear whether it maximizes I(V ; r). The Gaussian
assumption simplifies the analysis, but apparently it is not al-
ways optimal (see Section IV-C). Further, since Gaussian inputs
do not maximize I(V ; r), the upper limit of MI achieved by
SM is not clear. It appears that the optimum input distribution
for I(V ; r) depends on CSIT, but in the absence of CSIT,
fx cannot be adapted. Furthermore, for instance, when nR = 1
and T = 1, I(V ; r) reduces to I(v; r), and it is mainly de-
pendent on how much each channel element differs from other
elements. This distinction of elements depends on the under-
lying fading distribution. In a massive MIMO regime, CSIT
is not required to capture the distinctions between channel
elements, but the CDI is sufficient. Therefore, in the massive
MIMO regime, the actual value of each channel element is not
important, but the distribution information is. In this paper, it
is shown that CDI in massive MIMO systems can be used to
adapt the input distribution to fading to achieve high spectral
efficiency. The analysis in this paper presumes no distribution
for the channel inputs and provides an upper limit for MI
achieved by SM, i.e., SM capacity.

IV. MAIN RESULT AND ANALYSIS

The main result of this paper can be summarized as follows.
Theorem 1: The capacity of the SM MIMO system described

by (1) in Section II can be upper bounded by

C ≤ log2

∣∣∣∣I +
pEs

TLσ2
HDHH

∣∣∣∣ bits/s/Hz (11)

where the diagonal matrix D = diag (d1, . . . , dN ) depends
on the active antenna set, and

∑
i di = TL. In the limit of

N/nR → ∞, the capacity upper bound in (11) is almost cer-
tainly achievable, and the optimum distribution for x is inde-
pendent of CSI but CDI. The channel input distribution should
be adapted to the channel fading in order to achieve this upper
bound. The optimum per stream input distribution is given by

fXi
(xi) = g(xIi)g(xQi) (12)

where

g(s) = φ(s)

(
1 +

∞∑
�=2

A2�He2�

(√
2T
Es

s

))
(13)

φ(s) =

√
T

πEs
e−

Ts2

Es (14)

with He2�(·) is the 2�th probabilists’ Hermite polynomial, and

A2� =

�∑
k=0

(−1)k

k!(2�− 2k)!2k
mxIi

2�−2k. (15)

The �th raw moment of xIi, i.e., mxIi

� is given as

mxIi

� =

⎧⎪⎨
⎪⎩

(�−1)!!E
�
2
s (E{h2

I})
�
2

(2T )
�
2 E{h�

I}
, if � is even

0, if � is odd.
(16)

Note that mxI

� = m
xQ

� for all � and the full input distribution is
given as fx =

∏
i fXi

.
Theorem 1 shows that the optimum channel input distribution

depends on the underlying fading distribution through its raw
moments. This is in complete contrast to the conventional SMX
MIMO where the optimum channel input is always Gaussian
variate. In SMX MIMO, adapting to channel fading often
means adapting the input variance (i.e., power) to the fading.
The family of the channel input distribution remains unchanged
as Gaussian. However, in SM MIMO, adapting to fading means
changing the family of distribution. In this context, results
from (12)–(16) will be useful. In practice, x can be designed
to have the distribution in (13) using variable-length coding
schemes such as Huffman coding. Since (13) is a continuous
distribution, it is not possible to design channel inputs exactly
to have this continuous distribution, but it can be approximated
accurately [31]. The process includes truncation and quanti-
zation of the probability distribution. The granularity of the
quantization (i.e., ΔxIi) depends on the number of bits to be
encoded per real dimension.
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A. Proof of Theorem 1

How the matrix, D, is evaluated is given in Example 1. The
proof of Theorem 1 is the focus here. Firstly, a simple case is
considered, and then, extensions to general antenna cases are
followed.

1) nR = T = 1: An SM system with a deterministic channel
is considered with nR = T = 1. For a single antenna receiver,
the channel matrix H reduces to a vector denoted by h =
(h1, . . . , hN ), and the channel input–output relationship for SM
in (1) can be rewritten as

r =
√
pvx+ n (17)

where the received signals r, v, andx and AWGN n are now
complex scalars. The transmit power is constrained to E{|x|2}=
Es. First, the channel is modeled as a two-source multiplicative
multiple access channel (MAC). The sources v and x are
independent. It is further assumed that the source v has a finite
alphabet that is h1, . . . , hN . The objective is to calculate the
sum capacity of the system. From the chain rule for MI of MAC

I(x, v; r) = I(x; r) + I(v; r|x) (18)
= H(r)−H(r|x, v). (19)

By following the standards, it can be shown that H(r|x, v) =
log2 πeσ

2 in the AWGN channel. Since I(x, v; r) is maximum
when H(r) is maximum, maximizing the entropy of r remains.
The H(r) can be upper bounded by the entropy of a complex
Gaussian RV with a variance as same as that of r. Therefore, an
upper bound for the capacity of SM can be derived as

C = max
fX

I(x, v; r) ≤ log2

(
1 +

pσ2
z

σ2

)
(20)

where σ2
z is the second moment of z, and z=vx. It is clear from

the definition of z that σ2
z = E(|v|2)Es. The capacity problem

is now reduced to find the second moment of the source v. Due
to v having a finite alphabet, its constellation energy is given
by
∑N

k=1 |hk|2/N = ‖h‖2/N . Note that this is because the
transmitter equally likely activates antennas in the absence of
CSIT. As a result, a capacity upper bound can be derived as

C ≤ log2

(
1 +

ρ

N
‖h‖2

)
(21)

where ρ = pEs/σ
2. At this stage, it is not clear if the upper

bound in (21) could actually be achievable with no CSIT. If
the upper bound is to be achieved in a Gaussian noise channel,
z should be a Gaussian variate. It appears that CSIT is essential
to make z Gaussian variate. Moreover, it is not clear whether z
could be made Gaussian variate even with ideal CSIT. However,
an interesting scenario occurs in the massive MIMO regime
where the capacity upper bound is indeed achievable with
no CSIT. The following Lemma provides a useful result for
proving the main theorem.

Lemma 1: Let z be a complex RV defined by z = vx. Let v
be a uniformly distributed complex discrete RV with a support
of v ∈ {h1, . . . , hN}. The elements (i.e., hk) of the alphabet of
v are drawn from a complex random process with finite raw
moments. Let E(hi

I) and E(hi
Q) be the ith raw moments of

real and imaginary parts, respectively, of this random process.
x = xI + jxQ is a zero-mean Es-variance complex RV with

i.i.d. real and imaginary components. Note that −∞ ≤ hIi,
hQi ≤ ∞ for all i. In the limit of N (i.e., N → ∞), z converges
in distribution to a Gaussian RV, i.e.,

z
d−→ CN

(
0,

‖h‖2
N

Es

)
(22)

where
d−→ denotes the convergence in distribution if x varies

with the following distribution function:

fX(x) = g(xI)g(xQ) (23)

where

g(s) = φ(s)

(
1 +

∞∑
�=2

A2�He2�

(√
2
Es

s

))
(24)

φ(s) =
1√
πEs

e−
s2

Es (25)

A2� =
�∑

k=0

(−1)k

k!(2�− 2k)!2k
mxI

2�−2k. (26)

The ith raw moment of xI , i.e., mxI

�

mxI

� =

⎧⎪⎨
⎪⎩

(�−1)!!E
�
2
s (E{h2

I})
�
2

2
�
2 E{h�

I}
, if � is even

0, if � is odd.

(27)

Note that mxI

� = m
xQ

� for all �.
Proof: See Appendix B. �

Lemma 1 shows that in massive MIMO scenarios (i.e.,
N → ∞), an input distribution can be found for x, which
makes z a Gaussian variate, and it does not depend on v.
However, it further shows that the input distribution depends
on CDI. Unlike in single-input–single-output fading channels,
the capacity achieving x is not always Gaussian. Therefore, in
the absence of CSIT or strictly with no CSIT but with CDIT, the
capacity upper bound in (21) is indeed achievable as N → ∞.
Hence, the capacity of SM with a deterministic wireless channel
in a massive MIMO regime can be given as

C = log2

(
1 +

ρ

N
‖h‖2

)
(28)

and the capacity in fading CF becomes

CF = Eh
{
log2

(
1 +

ρ

N
‖h‖2

)}
(29)

where Eh{·} denotes the expectation over fading coefficients.
The expectation in (29) can be evaluated for many fading
models accurately. For instance, in Rayleigh fading, ‖h‖2 is
distributed as

f‖h‖2(t) =
1

Γ(N)
tN−1e−t, for t ≥ 0. (30)

Hence, the ergodic capacity in Rayleigh fading can be
evaluated as

CF =

∞∫
0

log2

(
1 +

ρt

N

)
f‖h‖2(t)dt. (31)

The integral in (31) can be solved in closed form and is given
explicitly in [32, pp. 572].

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on November 16,2024 at 17:51:06 UTC from IEEE Xplore.  Restrictions apply. 



6866 IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. 65, NO. 9, SEPTEMBER 2016

2) nR>1, T =1: Next, the results are extended to the nR>1
case. It can be seen that the source v is a vector variable. Its
discrete alphabet spans from h1 to hN . The capacity upper
bound can be calculated for a fixed H as

C = max
fX

I(x,v; r) = log2

∣∣∣∣I +
1
σ2

Qz

∣∣∣∣ (32)

where the vector variable z = vx, and Qz is the covariance
matrix of z. | · | denotes the matrix determinant. It is clear
that if z is to be Gaussian distributed, its elements (i.e., zi for
i = 1, . . . , nR) should be Gaussian variate, but zi = vix, where
vi is the ith element of v, is a complex scalar product. There-
fore, the input distribution derived in Lemma 1 for x makes
each element of z a Gaussian variate, making the vector z
jointly Gaussian variate. From the independence of x and v,
it is obtained that

Qz = Ev{vvH}Es. (33)

From the law of large numbers, it can be shown that as N/nR→
∞ Ev

{
vvH

}
=(1/N)

∑N
k hkh

H
k =(1/N)HHH . For exam-

ple a random experiment is setup in which v is observed
for τ number of trials. Then, the sample average is taken.
If τ is sufficiently large, the sample covariance converges to
the distribution covariance. Because hk are equally likely, for a
large but finite number of trials of τ , the observer should obtain
hk, τ/N times. Therefore, the sample covariance converges
to (1/N)HHH . This proves that (1/N)HHH is indeed the
covariance of v. Substituting this in (32), the final result is
obtained as

C = log2

∣∣∣I +
ρ

N
HHH

∣∣∣ (34)

and the ergodic capacity in fading as

CF = EH
{
log2

∣∣∣I +
ρ

N
HHH

∣∣∣} . (35)

3) nR = 1, T > 1: The capacity of SM for a fixed channel
depends on the particular selection of antennas sets. The general
baseband equation reduces for nR = 1 to

r =
√
ρgx+ n (36)

where C1×T vector g = (g1, . . . , gT ) has a discrete alphabet,
the transmit CT×1 vector x = (x1, . . . , xT )

T has equal power
constellation symbols, and the power of each symbol is set to
Es/T . First, an upper bound is obtained for the sum capacity
I(x, g; r) as

C = max
fx

I(x, g; r) ≤ log2

(
1 +

σ2
z̃

σ2

)
(37)

where σ2
z̃ is the second moment of z̃. In this case, z̃ = gx.

Since, x and g are independent, it can be obtained that

σ2
z̃ = Eg{ggH}Es

T

= Eg1,...,gT {g1g∗1 + · · ·+ gT g
∗
T }

Es

T
. (38)

If transmit antenna k is activated dk times in total, σ2
z̃ reduces

to (see Example 1)

σ2
z̃ =

Es

LT
hHDh (39)

where the diagonal matrixD = diag(d1, . . . , dN ). Substituting
the result in (39) into (37), the desired result for the upper
bound is obtained. The alphabets for g1 to gT depend on the
selection of the transmit antenna sets. The alphabet of each
gi has a different number of distinct elements, and the same
element may occur multiple times. The following is defined to
capture these phenomena. Let Ni (Ni ≤ N) be the number of
distinct elements in the alphabet of gi. Let the alphabet of gi be
gi ∈ {ei1, . . . , eiNi

}, and assume that the eikth element occurs
aik times in the alphabet of gi, and all aik’s are integers. Note
that although a different notation is introduced for the alphabet
of gi, here, they are actually drawn from the original channel
matrix H and, thus, from the random process Φ, as shown in
Example 1. Hence, the �th raw moments of real and imaginary
parts of eik are E{h�

I} and E{h�
Q}, respectively, ∀ i, k. Further,

due to the constraint on the total number of active antenna sets,∑
k aik = L for all i. To achieve the capacity upper bound in

(37) in a Gaussian noise channel, z̃ should be made a Gaussian
variate. z̃ is a sum of complex scalar products: z̃ =

∑
i gixi.

If each product can be made Gaussian, as a result, z̃ becomes
Gaussian. Hence, an arbitrary product denoted as gixi is con-
sidered, and the per stream input distribution is denoted as fXi

.
Let eik be eik = eIik + jeQik, where eIik is the real part of eik.
The per dimension input distribution of xi = xIi + jxQi is
considered here. We then have the characteristic function (CF)
from (93) for xIi as

ϕxIi
(t) =

∞∑
�=0

mxIi

�

(jt)�

�!
(40)

where

mxIi

� =

⎧⎪⎨
⎪⎩

(�−1)!!E
�
2
s

(∑Ni
k=1 aike

2
Iik

) i
2

T
�
2 L

�−2
2

(∑Ni
k=1 aike�Iik

) , if � is even

0, if � is odd.

(41)

From Lemma 5, in the limit of Ni → ∞, regardless of the
weights aik

1
L

(
Ni∑
k=1

aike
�
Iik

)
= E

{
h�
I

}
(42)

if
∑Ni

k=1 a
2
ik/(
∑Ni

k=1 aik)
2 → 0. Since all aik’s are integers,

this condition is always satisfied, but depending on the actual
values of aik, the convergence speed may be changed. The con-
vergence speed could be improved by selecting active antenna
sets, which result Ni ≈ N . Then, (41) becomes

mxIi

� =

⎧⎪⎨
⎪⎩

(�−1)!!E
�
2
s (E{h2

I})
�
2

(2T )
�
2 E{h�

I}
, if � is even

0, if � is odd.
(43)
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This confirms that the per dimension input distribution does not
depend on CSI but CDI. Similar to the approach in Lemma 1,
the per stream per dimension input distribution denoted fXIi

can be derived, and the full per stream input distribution fXi

can be obtained as in Theorem 1. Due to the channel model
considered in this paper (see Section II), alphabets of all gi’s are
drawn from the same random process. As a result, all xi’s are
identically distributed. The independent stream transmission
implies fx =

∏
i fXi

. Therefore, it is clear that, in the massive
MIMO regime, z̃ can be made a Gaussian variate with no CSIT.
Substituting the result in (39) into (37), the desired result is
obtained for the capacity of SM with a deterministic wireless
channel in the massive MIMO regime, i.e.,

C = log2

(
1 +

ρ

LT
hHDh

)
(44)

where
∑N

k=1 dk = LT , and the capacity in fading is

CF = Eh
{
log2

(
1 +

ρ

LT
hHDh

)}
. (45)

The following example further explains the analysis.
Example 1: Consider an SM system where the number of

transmit antennas is set to N = 4 and the number of active
antennas is set to T = 2 for exposition. Let the allowed antenna
sets be (1, 2), (1, 3), (1, 4), (2, 3), making L = 4. The alphabet
for v1 is h1, h2 and for v2 is h2, h3, h4; thus, N1 = 2 and
N2 = 3. Therefore

Ev1
{
v1v

H
1

}
=

1
L

(
3|h1|2 + |h2|2

)
(46)

Ev2
{
v2v

H
2

}
=

1
L

(
|h2|2 + 2|h3|2 + |h4|2

)
. (47)

After substituting (46) and (47) into (38), and with some
simplifications, we have σ2

z̃ = (Es/8)hHDh, where in this
particular case, D = diag(3, 2, 2, 1). An SM system with the
modified antenna set (1, 2), (3, 1), (4, 3), (2, 4) may be more
favorable from an information-theoretic perspective because
N = N1 = N2 = 4, i.e., the maximum allowed by the system
dimension.

4) nR > 1, T > 1: The analysis follows the same logic as
for a single-antenna case. The channel equation is given in (1).
The details are not given here, and the final result for a fixed
channel matrix H is given by

C = log2

∣∣∣I +
ρ

LT
HDHH

∣∣∣ (48)

and the ergodic capacity in fading is

CF = EH
{
log2

∣∣∣I +
ρ

LT
HDHH

∣∣∣} . (49)

One may compare (49) with the capacity results in the ab-
sence of CSIT in [2]. In general, the diagonal matrix D may
have duplicate entries. Hence, the evaluation of the expecta-
tion in (49) is quite complex but can be evaluated exactly as
shown in [33].

B. Special Case

In Rayleigh fading, samples of V are drawn from a zero
mean complex Gaussian random process, and we have the
following result for the density function of x.

Corollary 1: In Rayleigh fading and in the limit of N → ∞,
the capacity achieving per stream input distribution fXi

con-
verges in distribution to

fXi
(xi) = g(xI)g(xQ) (50)

where the per dimension density function is given by

g(s) =
1
2
δ

(
s+

√
Es

2T

)
+

1
2
δ

(
s−
√

Es

2T

)
(51)

where δ(s) is the direct delta function.
Proof: Here, the per dimension density function of Xi is

derived, and the results of Theorem 1 is applied. From (16), in
Rayleigh fading

E
{
h2
I

}
=

1
2
, and E

{
h�
I

}
= (� − 1)!!

(
1
2

) �
2

. (52)

Application of (52) into (16) directly yields that mxIi

� = (Es/
2T )�/2 for � is even and zero otherwise. It gives the CF of xIi

ϕxIi
(t) = 1 − Est

2

2T · 2!
+

E2
s t

4

4T 2 · 4!
− E3

s t
6

8T 3 · 6!
+ · · ·

=

∞∑
�=0

(−1)�(
√
Est)

2�

(2T )� · 2�!
= cos

(√
Es

2T
t

)
. (53)

By inverting CF for xIi in (53), the optimum per dimension
input distribution in Rayleigh fading can be found as shown
in (51). �

Similarly, an input distribution can be obtained for any fading
scenario such as Rician and Nakagami fading. Moreover, this ap-
proach could be employed to derive the optimal input distribu-
tion for channels that do not have a statistical fading model but
measured data. In this context, (16) may be particularly useful,
where sample moments may be used instead of distribution
moments. For illustrative purposes, the results of a Monte Carlo
simulation are given in Fig. 2 to confirm the result presented
in Corollary 1.

C. Remarks

The most favorable fading scenario for SM in a Gaussian
noise channel is Rayleigh fading. In undesirable fading sce-
narios where different antenna sets are difficult to distinguish
at the receiver, the information transferred in the antenna set
index is degraded. In SM, the total capacity depends on the
individual capacities achieved by both constellation symbols
(e.g., Cx) and antenna set index (e.g., CV ). In undesirable fad-
ing, SM capacity is mainly governed by Cx. For instance, if all
channel elements are approximately equal, CV → 0; thus, SM
capacity reduces to the capacity of a nR × T MIMO system,
where fx converges to a T -variate jointly Gaussian distribution
because E{h�

I} = (E{h2
I})

�/2 ∀ � in (16). Therefore, channel
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Fig. 2. Cumulative distribution function comparison of the real part of the
product vx in (17) for different N in Rayleigh fading. Optimum input distri-
bution in (50) is used, where Es = 0 dB, and T = 1.

input distribution should be adjusted in accordance with the
fading scenario. In this context, the analysis in this paper can
be useful to derive the optimum channel input distribution for
a given fading scenario; thus, the dependence of the input
distribution on the distribution information of fading is not
surprising. In Rician fading for instance, the optimum channel
input distribution varies with the Rician K factor. An SM
system in an i.i.d. Rician fading environment is considered with
N=64, T =1, and nR=2. The channel matrix H is modeled
as [41]

H =

√
K

1 +K
Hd +

√
1

1 +K
Hs (54)

where Hd and Hs are the deterministic and specular compo-
nent matrices of H , respectively. The matrix Hs contains
elements h[s]

ik ∼ CN (0, 1), and the matrixHd contains constant

elementsh[d]
ik =(1/

√
2)(1+j). Strictly,h[d]

ik is equal to e−j2πrik/λ,
where rik is the distance between kth transmit antenna to the
ith receive antenna, and λ is the carrier wavelength [42]. For
transmit and receive antenna arrays with collocated elements,
assuming an arbitrary unite norm complex value for h

[d]
ik can

be shown to be statistically equivalent to the more strict model.
Hence, the assumption of h[d]

ik =(1/
√

2)(1+j) is justified. As
a result, the �th raw moment of Φ, i.e., E{h�

I}, is given as

E
{
h�
I

}
=

(
1

1 +K

) �
2

EU

⎧⎨
⎩
(√

K

2
+

U√
2

)�
⎫⎬
⎭ (55)

where U ∼ N (0, 1). For instance

E{hI} =

√
K

2(1 +K)
, E

{
h2
I

}
=

1
2

(56a)

E
{
h3
I

}
=

(K + 3)
√
K

2
√

2(1 +K)
3
2

(56b)

E
{
h4
I

}
=

K2 + 6K + 3
4(1 +K)2

(56c)

Fig. 3. Ergodic capacity of a 2 × 64 SM MIMO link in Rician fading.

Fig. 4. Per stream per dimension input distribution fXIi
for a SM system in

Rician fading, and Es = 0 [dB].

are the first four raw moments. The results here in conjunction
with (16) confirm that the per stream channel input distribution
in Rician fading varies with the K factor. The channel capacity
also varies adversely with the K factor. Fig. 3 shows the ergodic
capacity [see (49)] of an SM MIMO link in Rician fading, where
different K factors are considered. It is apparent that the capac-
ity reduces with an increasing K factor. The system has a max-
imum of two degrees of freedom (DoF), but when K=30 [dB],
it clearly reduces to one. The DoF is the capacity growth rate as
defined in [34]. The per dimension per stream input distribution,
fXIi

is evaluated using Theorem 1, and results are shown in
Fig. 4. The optimum input distribution when K = 10 [dB] is
clearly different from Gaussian distribution. However, in strong
line-of-sight scenarios, e.g., when K = 18 [dB], the optimum
input distribution approximately coincides with a Gaussian dis-
tribution as shown in Fig. 4 (red curve). It is important to note
that high K factors are used to merely highlight the fact that,
in extremely undesirable fading conditions, Gaussian inputs
can also be approximately optimal, but such high K factors
may not be common in practice. Therefore, although Gaussian

Authorized licensed use limited to: DUBLIN CITY UNIVERSITY. Downloaded on November 16,2024 at 17:51:06 UTC from IEEE Xplore.  Restrictions apply. 



BASNAYAKA et al.: MASSIVE BUT FEW ACTIVE MIMO 6869

codebooks are, in general, not optimal for SM, in some un-
desirable fading scenarios, they can approximately be optimal.
The Gaussian codebooks are optimal only in the limit of K →
∞, which in practice is not relevant. For instance, the mo-
ment expression of per stream per dimension distribution of x
in (16) is considered. The fourth-order raw moment of xIi is

mxIi
4 =

3!!E2
s

(
E
{
h2
I

})2
(2T )2 E {h4

I}
=

3E2
s (1 +K)2

(2T )2(K2 + 6K + 3)
(57)

but

lim
K→∞

(1 +K)2

K2 + 6K + 3
= 1. (58)

Therefore, limK→∞ mxIi
4 = 3E2

s/4T 2. Similarly, all even mo-
ments converge as

lim
K→∞

mxIi

2k =
(2k − 1)!!Ek

s

(2T )k
. (59)

Therefore, the CF of xIi, ϕxIi
(t) is

ϕxIi
(t) =

∞∑
k=0

(−1)k(2k − 1)!!(
√
Est)

2k

(2T )k · 2k!
(60)

=
∞∑

k=0

(−1)kEk
s t

2k

(4T )k · k! = e−
Est2

4T . (61)

The inversion of (61) yields xIi ∼ N (0, Es/2T ) in the limit
of K → ∞. For the purpose of completeness, CDI for several
widely used fading models are summarized in Table I.

V. MASSIVE BUT FEW ACTIVE

MULTIPLE-INPUT–MULTIPLE-OUTPUT IN

CORRELATED RAYLEIGH FADING

Here, the analysis is extended to a scenario where the
transmit-side spatial correlation exists. If the transmit and re-
ceive antennas are collocated in a small area, the spatial corre-
lation is unavoidable. The effect of receive correlation upon the
SM capacity can be readily captured by incorporating receive
correlation into (49). It can be shown that the receive correlation
has no effect on the channel input distribution. It appears that
the transmit-side correlation in contract could have a significant
impact on the input distribution, and this effect is investigated
here. Without loss of generality, an SM system with nR=T =1
is considered. From Theorem 1, the per stream per dimension
input distribution of x depends on

mxI

� =

⎧⎪⎨
⎪⎩

(�−1)!!E
�
2
s (E{h2

I})
�
2

2
�
2 E{h�

I}
, if � is even

0, if � is odd.

(62)

Here

E
{
h�
I

}
= lim

N→∞

1
N

N∑
i=1

h�
Ii, � = 1, 2, . . . (63)

but the channel vectorh = (h1, . . . , hN) in correlated Rayleigh
fading scenarios has correlated elements. From [35]–[37],

Fig. 5. Uniform linear array (ULA). The space correlation occurs from anten-
nas in red to the antenna in green.

the channel vector can be rewritten as

h = hwR
1
2

T (64)

where RT is the transmit-side space correlation matrix, and
hw ∼ CN (0, I). In this model, if nR ≥ 1, H = HwR

1/2
T .

Here, the correlation between two transmit antennas is re-
stricted to be the same irrespective of the receive antenna where
it is observed. It is shown in [38] that this constraint is often
satisfied by space diversity arrays. According to the model in
(64), it can be seen that each and every transmit antenna is
correlated more or less with all other transmit antennas. This
is somewhat a strong assumption. As shown in the Fig. 5,
the green (the ith) antenna is correlated only with four close-
by antennas. The correlation occurs from other antennas are
insignificant and thus negligible. If it is assumed that the area
occupied by the large-scale MIMO system is scaled with N
such that the spatial separation between antenna elements is
fixed, and the channel elements {hi} can be modeled as an
m-dependent random sequence (see Definition 2). It is m = 2
in the scenario shown in Fig. 5 and m = 0 for uncorrelated
fading. Typically, each antenna is correlated with neighboring
antennas in correlated fading. For instance, the ith antenna
could be correlated with i− 2th, i− 1th, i+ 1th and i+ 2th
antennas, as shown in Fig. 5. A typical correlation model
between the channel elements can be given as [35]

E {hIihIi′} =

{
0.5e−0.05d2(i−i′)2 , |i− i′| ≤ m

0, otherwise
(65)

where d is the antenna spacing in wavelengths. Here, the in-
terest is in the quantity; I� = 1/N

∑N
i=1 h

�
Ii. From Theorem 3

in Appendix D, it is shown that, in the limit of N → ∞, I� con-
verges to a nonrandom quantity that depends only on the CDI,
which in this case is the correlation coefficient. Theorem 3 is
applied here; let {Xi} = {h�

Ii} be a stationary m-dependent
sequence of real RVs. Let E{h�

Ii} = μ, Var{h�
Ii} ≤ ∞, and

I� = 1/N
∑N

i=1 h
�
Ii be the partial sum. Then, from Theorem 3

in Appendix D, it can be shown that

lim
N→∞

I�
d→N

(
μ,

τ2

N

)
(66)

where τ2=Var{h�
Ik}+2

∑m
l=1 Cov{h�

Ik, h
�
Ii+l}. Since {h�

Ii}
is a m-dependent sequence, τ2 is bounded. Hence, in the limit
of N → ∞, the standard deviation of the limiting distribu-
tion approaches to zero. Therefore, I� almost certainly con-
verges to μ

lim
N→∞

I� → μ. (67)
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From Lemma 6, hIi can be given as hIi = aT ũ, where the
Rm+1×1 vector ũ = N (0, I). Here, in normalized correlated
Rayleigh fading, aTa = 1/2. Then

lim
N→∞

1
N

N∑
i=1

h�
Ii = μ = Eũ

{
(ũTaaT ũ)

�
2

}
(68)

= (�− 1)!! (aTa)
�
2 (69)

= (�− 1)!!

(
1
2

) �
2

(70)

for � = 2, 4, 6, . . .. The result in (70) in conjunction with
Corollary 1 yields the optimal input distribution for SM in cor-
related fading. It appears that the optimum input distribution in
m-correlated Rayleigh fading is the same as that in uncorrelated
Rayleigh fading (see Corollary 1), but it may be different in
other fading scenarios. The analytical method presented here
will also be useful to obtain the optimum input distribution in
other fading scenarios.

A. Remarks

The result in Section V is a direct consequence of the limit
result in (66). This limit result holds only if the ratio τ2/N
approaches to zero as N goes to infinity. In the m-dependent
case, τ2 is bounded so τ2/N approaches to zero almost cer-
tainly, but in the fully correlated case (m → N ), this limit
result also might hold. The parameter τ2 increases with m,
but if the increase is slower than the increase in N , τ2/N can
still approach to zero. In some instances, if the correlation be-
tween antennas decays sufficiently fast over the space, τ2 may
converge to a constant. In correlated Rayleigh fading, the con-
vergence of I� to μ, thus, the input distribution to the theoretical
optimum distribution, might be significantly slower, and the
convergence speed mainly depends on τ2 and, hence, on the
correlation structure of the antenna array.

VI. NUMERICAL RESULTS AND DISCUSSION

Here, a simulation study for comparing theoretical results
obtained in Section IV with the MI attainable with practical
constellations in fading is presented. The MI simulations are
based on the Monte Carlo method outlined in Section II-A. The
MI in fading can be calculated as

CSIM
F = EH {I(V ,x; r|H)} . (71)

The receive signal-to-noise ratio (SNR) is set to pEs/σ
2. The

modulation rate γ (in bits per channel use) denotes the number
of bits modulated into the channel in a single channel use.
The modulation rate described here is different from the rate
widely used in coding literature [14]. Note that, in fact, γ
is the channel input entropy in bits. Hence, it is also equiv-
alent to γ = H(V ,x), and it includes both information and
redundant bits. Simulation results are from several scenarios
as follows.

Fig. 6. Ergodic capacity and MI performance of a 1 × 64 SM MIMO
system. Here, T = 1, and BPSK/QPSK signal constellations are used for MI
evaluation.

Fig. 7. Uncoded average bit error probability of SM and SMX with γ = 7,
N = 64, and nR = 1/2/3.

1) S1: The objective of this scenario is to check if the capac-
ity result in (29) is attainable with practical constellations such
as QAM/PSK. The results are shown in Fig. 6, where MI curves
are shown for binary phase-shift keying (BPSK) and quadrature
PSK (QPSK) with 6 bits modulated in the antenna index, i.e.,
H(V ) = 6. There are a total of 7 and 8 bits modulated in every
time slot (i.e., channel use) in BPSK and QPSK constellations,
respectively. The MI curves are generated using (5). It is appar-
ent that simulated curves follow the analytical capacity closely
until SNR = 10 dB. After that, MI curves start to drift away
from the capacity as SNR increases, but the drift is larger in the
simulation curve with fewer modulated bits (i.e., when γ = 7).
Further, MI curves saturate at 7/8 bits/s/Hz because the channel
input entropyH(V ,x) is 7 and 8 bits/s/Hz in BPSK and QPSK,
respectively.

2) S2: In Fig. 7, the uncoded average bit error probability
of an SM system with N = 64 and nR = 1/2/3 is considered.
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Fig. 8. Ergodic capacity and MI performance of 2/3/4 × 64 SM MIMO
systems for γ = 15/17 in uncorrelated Rayleigh fading.

The error performance of SM in different fading scenarios
has been extensively studied [18], [19]. For comparison, an
SMX system with seven independent BPSK-modulated signal
streams is also considered, where random precoding is used to
map seven data streams to 64 transmit antennas [26]. Note that
the random beamforming may not be strictly comparable with
SM but could be used to obtain baseline error performance in
the absence of CSIT. It is shown in Fig. 7 that SM and SMX
achieve comparable average bit error rate (BER) at all the SNRs
considered. Here, SM uses a BPSK constellation and T = 1;
thus, H(V ) = 6 and H(x) = 1.

3) S3: An SM system with nR = 2, 3, and 4 is considered
in uncorrelated Rayleigh fading. The ergodic capacity is com-
pared with the achievable MI with γ = 15/17. Here, N = 64,
L = 212/214, and T = 3. Accordingly, a 212/214 set of three
antenna sets is selected for transmission, where antenna sets
are organized as in Example 1 to make Ni ≈ N ∀ i. To achieve
γ = 15, 12 bits are modulated in L = 212 antenna sets, i.e.,
H(V ) = 12; three BPSK symbols are transmitted directly from
T antennas, i.e., H(x) = 3; and 14 bits are modulated in
L = 214 antenna sets and three BPSK symbols are transmitted
directly from T antennas for γ = 17. The results are shown
in Fig. 8. The theoretical capacity in (49) is also shown for
comparison. The theoretical capacity of SM and the MI with
practical constellation are comparable. Moreover, the MI fol-
lows the theoretical capacity in SNR as high as 20 dB with
nR = 2, but it reduces to 10 dB in nR = 3. The MI curves
saturate at 15/17 bits/s/Hz because the channel input entropy
H(V ,x) = 15/17 bits, respectively, for γ = 15/17.

4) S4: In Fig. 9, the uncoded average bit error probability of
a SM system in Rayleigh fading with N = 64 is considered.
For comparison, a SMX system with 15 independent BPSK
modulated signal streams is also considered, where random pre-
coding is used to map 15 data streams to 64 transmit antennas,
and nR = 3. It is shown in Fig. 9 that SM and SMX achieve
comparable average uncoded BER at all SNRs considered.

5) S5: An SM system with N = 64, nR = 2, 3, and T = 2
in correlated Rayleigh fading is considered. Here, the channel

Fig. 9. Uncoded average bit error probability of SM and SMX with γ = 15,
N = 64, nR = 3, and T = 3.

Fig. 10. Ergodic capacity and MI of 2/3 ×64 SM MIMO system for γ = 12 in
correlated Rayleigh fading.

matrix H is modeled as

H = R
1
2

RHwR
1
2

T (72)

where RR and RT are receive and transmit correlation matri-
ces, respectively. The correlation matrices are generated using
the exponential decay model in [43], where the i, kth element
of either RR and RT is given by

[RX ]ik = r|i−k|
c (73)

where rc = e−β , with β being the correlation decay coefficient.
The subscript X denotes either R or T in (73). A comparison
between the SM capacity and the MI achieved by BPSK mod-
ulation is shown in Fig. 10. Here, it is assumed that rc = 0.8
at both the receiver and the transmitter. As shown, the ca-
pacity is reduced considerably due to the spatial correlation.
The MI in both cases follows the capacity curves until the
saturation at 12 bits/s/Hz. This is because, in this simulation,
γ = 12(H(V ) = 10,H(x) = 2).
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Fig. 11. Ergodic capacity comparison of SM and SMX MIMO in Rayleigh
fading, where N = 64, and nR = 3.

A. Further Remarks

This paper shows that SM, which is an antenna switching
technique, can achieve capacity comparable with the maximum
theoretical capacity of open-loop MIMO systems. The ergodic
capacity of open-loop SMX MIMO is given by [2]

CSMX = EH
{
log2

∣∣∣∣I +
gEs

Nσ2
HHH

∣∣∣∣
}

bits/s/Hz. (74)

Referring to the MI curve for nR = 3 in Fig. 8, for instance,
a 3 × 64 MIMO system with SM could theoretically achieve
nearly 10 bit/s/Hz of spectral efficiency with a R = 2/3 channel
code rate at SNR = 10 dB [39]. The capacity curve [i.e., (11)]
for nR = 3 in Fig. 8 confirms that 10 bit/s/Hz is very close to
the SM capacity. In fact results in Fig. 11 confirms that this is
also very close to the open-loop SMX MIMO capacity. This
suggests that a strong forward error correction (FEC) coding
scheme will ensure that SM in practice achieves rates com-
parable to the open-loop SMX MIMO. Finding the optimum
FEC coding scheme is outside the scope of this paper, but for
example, the uncoded BER and Shannon limit shown in Fig. 9
defines the playing field for channel coding for this running
example [40].

Theorem 1 quantifies the SM capacity and proves the achiev-
ability with no CSIT. It further quantifies the optimum input
distribution as N/nR → ∞. However, it does not provide how
the SM should be adapted to fading for finite N . SM modulation
should be carefully designed for different fading scenarios for
finite N to achieve (or approximate) the SM capacity pre-
dicted in Theorem 1. Here, example SM modulation schemes
are considered in different fading conditions. Let there be an
SM system with N = 64 and nR = 2 in Rayleigh and Rician
fading. The number of active antennas is set to T = 2, and the
input entropies are set to H(V ) = 10 and H(x) = 2, resulting
γ = 12. Here, H(x) = 2 is achieved by using two indepen-
dent BPSK data streams. As shown in Fig. 12, the achievable
MI in Rayleigh fading is closely comparable to SM capacity
until about 15 dB. In this case, 210 active antenna sets are

Fig. 12. Ergodic capacity and MI performance comparison of SM in Rayleigh
and Rician fading. Here, K = 10 dB for Rician fading.

selected in such a way that D is approximately a scaled identity
matrix. However, in Rician fading, achievable MI is dramati-
cally reduced. The reason is that the SM modulator modulates
10 bits out of 12 bits in the antenna index, and the fading is
relatively undesirable to support such a high rate in the antenna
index. Hence, the sum MI (i.e., the sum of MI achieved by the
antenna index and the constellation symbol) is not close to the
SM capacity predicted by Theorem 1. One can conclude that
SM capacity cannot be achieved in this scenario. However, if
H(V ) is reduced to 6 bits, and H(x) is increased to 6 bits, it
can be seen that achievable MI denoted by square markers is
again closely comparable to the SM capacity in Rician fading.
Here, H(V ) = 6 is achieved by setting T = 1, and H(x) = 6
is achieved by using a single 64-QAM data stream. Therefore,
in SM, modulation should be carefully adapted to fading condi-
tions. It may include adaptation of the channel input distribution
fx and/or bit allocation to spatial and constellation dimensions,
i.e., H(V ) and H(x).

There is another interesting scenario that occurs for finite
N and nR > T . The number of bits encoded in the antenna
index is inevitably limited to H(V ) ≤ log2�

(
N
T

)
�. Hence, if

L antenna sets are considered, I(V ; r) in (B) converges to
log2 L as SNR = Es/σ

2 goes to infinity. The sum MI is simply
dominated by MI achieved by the constellation symbols, i.e.,
I(x; r|V ). The growth rate of I(x; r|V ) as Es/σ

2 → ∞ can
at most be min(nR, T ), which in this case is T . One can
conclude that SM cannot achieve nR DoF in this case, but this
behavior can be attributed to the fact that N is finite. In this
case, typical MI curves exhibit two distinct regions, as shown
in Fig. 13. One region that is denoted as the DoF region has nR

DoF, and after a certain SNR, the MI growth rate reduces to T .
The region in which SM achieves T DoF is denoted in this
paper as the saturation region. The transition SNR can be
accurately calculated, and let it be defined as SNRT . An upper
bound for the saturation region can be readily found, and it
is given by the summation of log2 L, and (A). The transition
SNR, SNRT is defined as the SNR at which the high SNR
asymptotic for the upper bound for the saturation region and
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Fig. 13. Capacity and MI performance for finite N and nR > T . Here, it is
set that N = 128, T = 1, and nR = 2.

the SM capacity in (11) intersect, i.e., the red dot in Fig. 13.
Any SM system operates below SNRT for a given N , and T
should still have nR DoFs. Moreover, as N → ∞, SNRT goes
to infinity. This limitation can easily be reduced or overcome
in practice by using as many or more active antennas than the
number of receive antennas.

VII. CONCLUSION

In this paper, the information-theoretic capacity limit of SM
in the absence of CSI at the transmitter has been analyzed. The
particular interest is on systems with a large number of transmit
antennas in comparison with the number of receive antennas.
It is shown that SM has the potential to achieve the capacity
comparable with the open-loop MIMO systems, although a
subset of antennas at a time is activated. This is because
SM modulates information in the antenna index, which is in
complete contrast to the plain antenna switching techniques.
Unlike the conventional MIMO operation, both the channel
coefficients and input symbols carry information. As a result,
SM compensates for the loss of information capacity due to ac-
tivating a single or a few antennas by modulating information in
the antenna index. Then, the sum information capacity remains
high. It has been further shown through Monte Carlo simulation
for MI that the theoretical limits can be reached with practical
constellations such as M -QAM in operationally important SNR
regions. It is believed that these results will be useful for energy
and spectral efficient wireless data transmission for large-scale
MIMO systems in the absence of CSIT.

APPENDIX A
SOME USEFUL RESULTS

Here, the complex scalar product, z = vx, which is similar
to that in (17), is considered. The objective here is to find
the probability density function (pdf) of x, which makes z a
Gaussian variate when multiplied with v. In the context of
this paper, it is the channel input distribution. Towards that
objective, we have the following definitions and results.

Definition 1: Let X = XI + jXQ be a random complex
scalar RV; XI and XQ be its real and imaginary components,
respectively; and

√
−1 = j. Let the marginal pdfs of XI be gXI

and of XQ be gXQ
. The joint pdf of XI and XQ is gXIXQ

, and
the pdf of complex scalar X fX is defined as

fX(x) = gXIXQ
(xI , xQ). (75)

If real and imaginary components are independent, the pdf
of X is given by fX = gXI

(xI)gXQ
(xQ). If marginal pdfs

are independently and identically distributed, the pdf of X is
completely characterized by a marginal pdf of either XI or XQ.
In that scenario, the marginal pdf of XI or XQ is denoted the
per dimension pdf of X .

Lemma 2: [44] Let {Fn} denotes a sequence of distribution
functions with finite moments of all orders. Let the kth moment
of the distribution {Fn} be denoted by

βn,k =

∫
xkdFn(x). (76)

If for each fixed integer k ≥ 0 βn,k converges to a finite limit
βk, the sequence of distribution functions {Fn} converge to a
limit F , which has the same moment sequence {βk}.

Lemma 3: [44] Let F be a measure (distribution function) on
the real axis such that all the moments

βk =

∫
xkdF (x), k = 0, 1, 2, . . . (77)

are finite. If
∞∑

n=1

β
− 1

2n
2n = +∞ (78)

F is the only measure on the real axis with {βk} as its sequence
of moments. This is also known as Carleman’s condition in
classical analysis.

Lemma 4: Let F be a measure (distribution function) on the
real axis such that all the moments:

βk =

∫
xkdF (x), k = 0, 1, 2, . . . (79)

are finite. SinceF is a probability measure β0=1. The pdf ofF ,
i.e., f can be approximated by

f(t) =
1√
2π

e
−(t−β1)2

2β2

∞∑
i=0

AiHei

(
t− β1√

β2

)
(80)

where Hei(t) is the ith probabilists’ Hermite polynomial, and

Ai =
1
i!

∞∫
−∞

Hei(t)f(t)dt. (81)

The nth probabilists’ Hermite polynomial is

Hen(t) = n!

�n
2 �∑

m=0

(−1)m

m!(n− 2m)!2m tn−2m (82)

for −∞ ≤ t ≤ ∞. This approximation is also known as the
Gram–Charlier series.
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Theorem 2: Let V be a uniformly distributed real discrete
random variable with support of V ∈ {v1, . . . , vN}, and X is
a real zero-mean Ex-variance random variable. The elements
(i.e., vk) of the alphabet of V are drawn from a random process,
i.e., V with finite raw moments. The ith raw moment of the
random process is denoted by E(vi). Note that −∞ ≤ vi ≤ ∞
for all i. Let the real random variable Z be given by

Z = V X. (83)

Let gX be the pdf of X . In the limit of N → ∞

Z
d−→ N

⎛
⎝0,

(∑N
k=1 v

2
k

)
N

Ex

⎞
⎠ (84)

if X varies with the following density function:

gX(s) = φ(s)

(
1 +

∞∑
i=2

A2iHe2i

(
s√
Ex

))
(85)

where

φ(s) =
1√

2πEx

e−
s2

2Ex (86)

A2i =

i∑
k=0

(−1|)k

k!(2i− 2k)!2k
mX

2i−2k. (87)

The ith raw moment of X, mX
i

mX
i =

⎧⎨
⎩

(i−1)!!E
i
2
x (E{v2})

i
2

E{vi} , if i is even

0, if i is odd.
(88)

The RV X converges in distribution to an independent random
variable that is independent of V but dependent on the distribu-
tion information of V .

Proof: If it is assumed that V and X are independent for
the time being, we have

mZ
i =

(∑N
k=1 v

i
k

)
N

mX
i (89)

where mZ
i and mX

i are the ith raw moments of Z and X ,
respectively. The second moment of Z is given by

mZ
2 =

(∑N
k=1 v

2
k

)
N

Ex (90)

but from Gaussian assumption for Z , we know

mZ
i =

{(
mZ

2

) i
2 (i− 1)!!, if i is even

0, if i is odd
(91)

where (i − 1)!! denotes the double factorial, i.e., the product of
every odd numbers from i− 1 to 1. From (89)–(91), we have

mX
i =

⎧⎪⎨
⎪⎩

(i−1)!!E
i
2
x (
∑N

k=1 v2
k)

i
2

N
i−2
2 (

∑N
k=1 vi

k)
, if i is even

0, if i is odd.

(92)

It can be verified that if mX
i satisfies the moment equation

for X in (92), in conjunction with (89), the moments of Z
satisfy the Gaussian requirements [i.e., (91)]. Therefore, it
confirms that if X has the aforementioned structure for its
raw moments, Z is certainly Gaussian distributed: Z ∼ N (0,
(
∑N

k=1 v
2
k/N)Ex). We then have the CF for X as

ϕX(t) =

∞∑
i=0

mX
i

(jt)i

i!
(93)

but for a stationary random process

lim
N→∞

1
N

N∑
k=1

vik = E{vi} i = 1, 2, . . . . (94)

Therefore, for each fixed integer i ≥ 0, mX
i converges to

mX
i =

⎧⎨
⎩

(i−1)!!E
i
2
x (E{v2})

i
2

E{vi} , if i is even

0, if i is odd.
(95)

From moments convergence theorem in Lemma 2, it can be
shown that X has a limit distribution. Then, the pdf of X ,
i.e., gX , can be derived from

gX(s) =
1

2π

∞∫
−∞

ϕX(t)e−jstdt

=
1

2π

∞∫
−∞

∞∑
i=0

mX
i

(jt)i

i!
e−jstdt. (96)

It is assumed here that ϕX(t) converges. The convergence
analysis is possible if mX

i has an analytical solution; otherwise,
the Carleman’s condition in Lemma 3 should be used to verify
the existence of a unique measure. An analytical expression
for mX

i may not exist if the underlying random process V
does not have an analytical distribution but a finite number of
samples. The inversion in (96) can be evaluated approximately,
and the resultant approximation (expansion) about a normal
distribution is well documented and is generally termed as the
Gram–Charlier series (82). From (80), we have

gX(s) = φ(s)

(
1 +

∞∑
i=2

A2iHe2i

(
s√
Ex

))
(97)

where

φ(s) =
1√

2πEx

e−
s2

2Ex (98)

A2i =

i∑
k=0

(−1)k

k!(2i− 2k)!2k
mX

2i−2k. (99)

Here, A2 and all As with odd indexes can be shown to be
zero using the fact that all odd raw moments of X are zero.
Further, from (95), it can be verified that, when N → ∞, the
X converges in distribution to an independent random variable
that is independent of V . However, from (95), it is further clear
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that the distribution, gX , depends on the moments of the fading
distribution and, thus on the distribution information of V . �

APPENDIX B
PROOF OF LEMMA 1

Consider the complex scalar product of z = vx. Let v and x
be given as v = vI + jvQ, and x = xI + jxQ. Then, z can be
expanded as

z = vIxI − vQxQ + jvIxQ + jvQxI . (100)

If z is to be Gaussian distributed, from (100), each product
in (100) should be a Gaussian variate. The alphabets of vI
and vQ are the real and imaginary parts of {h1, . . . , hN}.
For instance, vI ∈ {hI1, . . . , hIN}. Therefore, without loss of
generality, the first product on the right-hand side of (100) is
considered. It is a product of a real discrete random variable
and a real continuous random variable. From Theorem 2, it is
clear that the first product vIxI can be made a Gaussian variate,
i.e., vIxI ∼ N (0, (

∑N
k=1 h

2
Ik/2N)Es), if the pdf of xI is

gxI
(s) = φ(s)

(
1 +

∞∑
i=2

A2iHe2i

(√
2
Ex

s

))
(101)

where

φ(s) =
1√
πEs

e−
s2

Es . (102)

The constant, A2i, is given in (26). The fact that E{x2
I} = Es/2

is used. Since vI and vQ are identically distributed, xI makes
the first and the last product in the right-hand side of (100) a
Gaussian variate. Similarly, a distribution function, gXQ

(s), for
xQ, which is identical to gXI

(s), will also make the second and
third products of (100) Gaussian variates with corresponding
variances. Since x = xI + jxQ, the complex input distribu-
tion with zero mean and Es variance can be obtained from
Definition 1 and (101), i.e.,

fX(x) = g(xI)g(xQ) (103)

where the resulting distribution, i.e., the sum of four Gaussian
RVs of z can be found, and it is given in Lemma 1.

APPENDIX C
PROOF OF LEMMA 5

Lemma 5: Let {xi} be a sequence of i.i.d. RVs with finite
mean and variance drawn from a random process, and let {ai}
be a sequence of positive weights; define AN =

∑N
i=1 ai and

Jk = (1/AN )
∑N

i=1 aix
k
i . Let E{xk} be the kth raw moment

of the random process. If the weight sequence {ai} satisfies the
following condition:

lim
N→∞

∑N
i=1 a

2
i(∑N

i=1 ai

)2 = 0 (104)

in the limit of N → ∞, regardless of the weights Jk → E{xk}.

Proof: The mean and variance of Jk are considered as
follows:

E{Jk} =
1

AN

N∑
i=1

aiE
{
xk
i

}
= E{xk} (105)

Var{Jk} = E
{

1
A2

N

(
N∑
i=1

aix
k
i

)(
N∑
i=1

aix
k
i

)}
− E{xk}2

= E

⎧⎨
⎩ 1

A2
N

⎛
⎝ N∑

i=1

a2ix
2k
i +

∑
i�=l

aialx
k
i x

k
l

⎞
⎠
⎫⎬
⎭−E{xk}2

=

∑N
i=1 a

2
i

A2
N

E{x2k}+
∑

i�=l aial

A2
N

E{xk}2 − E{xk}2

=

∑N
i=1 a

2
i

A2
N

(
E{x2k} − E{xk}2

)

=

∑N
i=1 a

2
i(∑N

i=1 ai

)2Var{xk}. (106)

From (106), it is clear that if
∑N

i=1 a
2
i /(
∑N

i=1 ai)
2 → 0, then

Var{Jk} → 0; therefore, Jk → E{xk}. This completes the
proof. �

APPENDIX D
PRELIMINARIES FOR SECTION V

Definition 2: [45], [46] X1, X2, . . . is a sequence of real
random variables with E{Xi} = μ and E{X2

i } ≤ ∞. The se-
quence of random variables {Xi} is said to be m-dependent
if |s− t| ≥ m, random variable, Xt is independent of Xs. In
other words, random variables with indexes t and s that are
more than m apart are independent.

Lemma 6: If {Xi} is a m-dependent Gaussian random
sequence, and {Ui} be an uncorrelated Gaussian random se-
quence, Xi could be given as a linear combination of uncorre-
lated Gaussians random variables in {Ui}. For instance, Xi can
be given as

Xi = a1Ui + a2Ui−1 (107)

if {Xi} is a 1-dependent sequence. Moreover,Xi can be given as

Xi = a1Ui−1 + a2Ui + a3Ui+1 (108)

if {Xi} is a 2-dependent random sequence. The coefficients ai’s
in the right-hand sides of (107) and (108) depend on the
correlation structure of the original sequence {Xi}.

Theorem 3: [45] Let {Xi} be a stationary m-dependent se-
quence of real random variables. Let E{Xi}=μ, Var{Xi}≤∞,
and Sn = 1/n

∑n
i=1 Xi be the partial sum. Then

lim
n→∞

√
n(Sn − μ)

d−→ N
(
0, σ2

m

)
(109)

where σ2
m = Var{Xk}+ 2

∑m
i=1 Cov{Xk, Xk+i}. Here, vari-

ance is Var{Xk} = E{X2
k} − μ2, and the covariance is

Cov{Xk, Xk+i} = E{XkXk+i} − μ2.
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